SLaK Save

[ICLR 2023] "More ConvNets in the 2020s: Scaling up Kernels Beyond 51x51 using Sparsity"; [ICML 2023] "Are Large Kernels Better Teachers than Transformers for ConvNets?"

Project README

Sparse Large Kernel Network - SLaK

Official PyTorch implementation of

(1) More ConvNets in the 2020s: Scaling up Kernels Beyond 51 x 51 using Sparsity, ICLR 2023.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao Xiao, Boqian Wu, Mykola Pechenizkiy, Decebal Mocanu, Zhangyang Wang

[arXiv] [Atlas Wang's talk]

(2) Are Large Kernels Better Teachers than Transformers for ConvNets?, ICML 2023.

Tianjin Huang, Lu Yin, Zhenyu Zhang, Li Shen, Meng Fang, Mykola Pechenizkiy, Zhangyang Wang, Shiwei Liu


We propose SLaK, a pure ConvNet model that for the first time is able to scale the convolutional kernels beyond 51x51.

Table of contents

Results and ImageNet-1K trained models

SLaK with 51x51 kernels trained on ImageNet-1K for 300 epochs

name resolution kernel size acc@1 #params FLOPs model
ConvNeXt-T 224x224 7x7 82.1 29M 4.5G ConvNeXt
ConvNeXt-S 224x224 7x7 83.1 50M 8.7G ConvNeXt
ConvNeXt-B 224x224 7x7 83.8 89M 15.4G ConvNeXt
SLaK-T 224x224 51x51 82.5 30M 5.0G Google Drive
SLaK-S 224x224 51x51 83.8 55M 9.8G Google Drive
SLaK-B 224x224 51x51 84.0 95M 17.1G Google Drive

SLaK-T with 31x31, 51,51, and 61x61 kernels trained on ImageNet-1K for 120 epochs

name resolution kernel size acc@1 #params FLOPs model
SLaK-T 224x224 31x31 81.5 30M 4.8G Surf Drive
SLaK-T 224x224 51x51 81.6 30M 5.0G Surf Drive
SLaK-T 224x224 61x61 81.5 31M 5.2G Surf Drive

ConvNeXt distilled from SLaK via large-2-small kernel distillation on ImageNet-1K for 300 epochs

name resolution kernel size acc@1 #params FLOPs model
ConvNeXt-T 224x224 7x7 82.1 29M 4.5G ConvNeXt
ConvNeXt-S 224x224 7x7 83.1 50M 8.7G ConvNeXt
ConvNeXt L2S-T 224x224 7x7 83.1 29M 4.5G Surf Drive
ConvNeXt L2S-S 224x224 7x7 84.3 50M 8.7G Surf Drive

Installation

The code is tested used CUDA 11.3.1, cudnn 8.2.0, PyTorch 1.10.0 with A100 GPUs.

Dependency Setup

Create an new conda virtual environment

conda create -n slak python=3.8 -y
conda activate slak

Install Pytorch>=1.10.0. For example:

conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge

Clone this repo and install required packages:

git clone https://github.com/Shiweiliuiiiiiii/SLaK.git
pip install timm tensorboardX six

To enable training SLaK, we follow RepLKNet and install the efficient large-kernel convolution with PyTorch provided by MegEngine:

  1. cd cutlass/examples/19_large_depthwise_conv2d_torch_extension
  2. ./setup.py install --user. If you get errors, (1) check your CUDA_HOME; (2) you might need to change the source code a bit to make tensors contiguous see here for example.
  3. A quick check: python depthwise_conv2d_implicit_gemm.py
  4. Add WHERE_YOU_CLONED_CUTLASS/examples/19_large_depthwise_conv2d_torch_extension into your PYTHONPATH so that you can from depthwise_conv2d_implicit_gemm import DepthWiseConv2dImplicitGEMM anywhere. Then you may use DepthWiseConv2dImplicitGEMM as a replacement of nn.Conv2d.
  5. export LARGE_KERNEL_CONV_IMPL=WHERE_YOU_CLONED_CUTLASS/examples/19_large_depthwise_conv2d_torch_extension so that RepLKNet will use the efficient implementation. Or you may simply modify the related code (get_conv2d) in SLaK.py.

Training code

We provide ImageNet-1K training, and ImageNet-1K fine-tuning commands here.

ImageNet-1K SLaK-T on a single machine

python -m torch.distributed.launch --nproc_per_node=4 main.py  \
--Decom True --sparse --width_factor 1.3 -u 2000 --sparsity 0.4 --sparse_init snip  --prune_rate 0.5 --growth random \
--epochs 300 --model SLaK_tiny --drop_path 0.1 --batch_size 128 \
--lr 4e-3 --update_freq 8 --model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k --num_workers 40 \
--kernel_size 51 49 47 13 5 --output_dir /path/to/save_results
  • To enable to train/evaluate SLaK models, make sure that you add --sparse --Decom True --kernel_size 51 49 47 13 5 --sparse_init snip in your script. --sparse: enable sparse model; --sparsity: model sparsity; --width_factor: model width; -u: adaptation frequency; --prune_rate: adaptation rate, --kernel_size: [4 * (kernel size of each stage) + the size of the smaller kernel edge].
  • You can add --use_amp true to train in PyTorch's Automatic Mixed Precision (AMP).
  • Use --resume /path_or_url/to/checkpoint.pth to resume training from a previous checkpoint; use --auto_resume true to auto-resume from latest checkpoint in the specified output folder. To resume the training of sparse models, we need to set --sparse_init resume to get the masks.
  • --batch_size: batch size per GPU; --update_freq: gradient accumulation steps.
  • The effective batch size = --nodes * --ngpus * --batch_size * --update_freq. In the example above, the effective batch size is 4*8*128*1 = 4096. You can adjust these four arguments together to keep the effective batch size at 4096 and avoid OOM issues, based on the model size, number of nodes and GPU memory.

ImageNet-1K SLaK-S on a single machine

python -m torch.distributed.launch --nproc_per_node=8 main.py  \
--Decom True --sparse --width_factor 1.3 -u 100 --sparsity 0.4 --sparse_init snip  --prune_rate 0.3 --growth random \
--epochs 300 --model SLaK_small --drop_path 0.4 --batch_size 64 \
--lr 4e-3 --update_freq 8 --model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k --num_workers 40 \
--kernel_size 51 49 47 13 5 --output_dir /path/to/save_results

ImageNet-1K SLaK-B on a single machine

python -m torch.distributed.launch --nproc_per_node=16 main.py  \
--Decom True --sparse --width_factor 1.3 -u 100 --sparsity 0.4 --sparse_init snip  --prune_rate 0.3 --growth random \
--epochs 300 --model SLaK_base --drop_path 0.5 --batch_size 32 \
--lr 4e-3 --update_freq 8 --model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k --num_workers 40 \
--kernel_size 51 49 47 13 5 --output_dir /path/to/save_results

To run ConvNeXt, simple set the kernel size as --kernel_size 7 7 7 7 100. (Make sure that the last number is larger than the first four numbers)

Training code for large-kernel distillation

Distilling SLaK-S to ConNeXt-S with NKD, 300 epoches

python -m torch.distributed.launch --nproc_per_node=4 main_KD.py  \
--resume /path/to/SLaK-Small/checkpoint --Decom True --T 3.0 --width_factor 1.3 -u 2000 --distill_resume --lr_fd 3e-5 --epochs 300 --model SLaK_small --distill_type NKD --model_s SLaK_small --drop_path 0.1 --batch_size 64 --lr 4e-3 --update_freq 16 --model_ema true --model_ema_eval false \
--data_path /path/to/imagenet-1k --num_workers 40 \
--kernel_size 51 49 47 13 5 --output_dir /path/to/save_results

Distilling SLaK-T to ConNeXt-T with NKD, 300 epoches

outdir=/gpfs/work3/0/prjste21060/projects/datasets/T3_bnTrue_NKD_STConvNext_300ep
python -m torch.distributed.launch --nproc_per_node=4 main_KD.py  \
--resume /path/to/SLaK-tiny/checkpoint --Decom True --T 3.0 --width_factor 1.3 -u 2000 --lr_fd 3e-5 --epochs 300 --model SLaK_tiny --distill_resume --distill_type NKD --model_s SLaK_tiny --drop_path 0.1 --batch_size 64 --lr 4e-3 --update_freq 8 --model_ema true --model_ema_eval false \
--data_path /path/to/imagenet-1k --num_workers 40 \
--kernel_size 51 49 47 13 5 --output_dir /path/to/save_results

Evaluation

We give an example evaluation command for a SLaK_tiny on ImageNet-1K :

Single-GPU

python main.py --model SLaK_tiny --eval true \
--Decom True --kernel_size 51 49 47 13 5 --width_factor 1.3 \
--resume path/to/checkpoint \
--input_size 224 --drop_path 0.2 \
--data_path /path/to/imagenet-1k

Multi-GPUs

python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model SLaK_tiny --eval true \
--Decom True --kernel_size 51 49 47 13 5 --width_factor 1.3 \
--resume path/to/checkpoint \
--input_size 224 --drop_path 0.2 \
--data_path /path/to/imagenet-1k

Semantic Segmentation and Object Detection

Semantic Segmentation on ADE20K

name Configuration kernel size mIoU #params FLOPs model
ConvNeXt-T 300epochs/160K 7x7 46.0 60M 939G ConvNeXt
SLaK-T 300epochs/160K 51x51 47.6 65M 936G Surf Drive
ConvNeXt-S 300epochs/160K 7x7 48.7 82M 1027G ConvNeXt
SLaK-S 300epochs/160K 51x51 49.4 91M 1028G Surf Drive
ConvNeXt-B 300epochs/160K 7x7 49.1 122M 1170G ConvNeXt
SLaK-B 300epochs/160K 51x51 50.0 135M 1172G Surf Drive

Object detection and segmentation on MS COCO: 120epochs/12epochs refers to 120 epochs of supervised training followed by 12 epochs of finetuning.

name Configuration kernel size $AP^{box}$ $AP^{box}_{50}$ $AP^{box}_{75}$ $AP^{mask}$ $AP^{mask}_{50}$ $AP^{mask}_{75}$ model
ConvNeXt-T 120epochs/12epochs 7x7 47.3 65.9 51.5 41.1 63.2 44.4 ConvNeXt
SLaK-T 120epochs/12epochs 51x51 48.4 67.2 52.5 41.8 64.4 45.2 Surf Drive
ConvNeXt-T 300epochs/36epochs 7x7 50.4 69.1 54.8 43.7 66.5 47.3 ConvNeXt
SLaK-T 300epochs/36epochs 51x51 51.3 70.0 55.7 44.3 67.2 48.1 [Surf Drive]

We use MMSegmentation and MMDetection frameworks. Just clone MMSegmentation or MMDetection, and

  1. Put segmentation/slak.py into mmsegmentation/mmseg/models/backbones/ or mmdetection/mmdet/models/backbones/. The only difference between segmentation/slak.py and SLaK.py for ImageNet classification is the @BACKBONES.register_module.
  2. Add SLaK into mmsegmentation/mmseg/models/backbones/__init__.py or mmdetection/mmdet/models/backbones/__init__.py. That is
...
from .slak import SLaK
__all__ = ['ResNet', ..., 'SLaK']
  1. Put segmentation/configs/*.py into mmsegmentation/configs/SLaK/ or detection/configs/*.py into mmdetection/configs/SLaK/; put files of mmsegmentation/mmseg/core/optimizers/''' into mmsegmentation/mmseg/core/optimizers/```.
  2. Download and use our weights. For examples, to evaluate SLaK-tiny + UperNet on ADE20K
python -m torch.distributed.launch --nproc_per_node=4 tools/test.py configs/SLaK/upernet_slak_tiny_512_80k_ade20k_ss.py --launcher pytorch --eval mIoU
  1. Or you may finetune our released pretrained weights
 bash tools/dist_train.sh  configs/SLaK/upernet_slak_tiny_512_80k_ade20k_ss.py 4 --work-dir ADE20_SLaK_51_sparse_1000ite/ --auto-resume  --seed 0 --deterministic

The path of pretrained models is 'checkpoint_file' in 'upernet_slak_tiny_512_80k_ade20k_ss'.

Visualizing the Effective Receptive Field

The code is highly based on the libracy of RepLKNet. We have released our script to visualize and analyze the Effective Receptive Field (ERF). The For example, to automatically download the ResNet-101 from torchvision and obtain the aggregated contribution score matrix,

python erf/visualize_erf.py --model resnet101 --data_path /path/to/imagenet-1k --save_path resnet101_erf_matrix.npy

Then calculate the high-contribution area ratio and visualize the ERF by

python erf/analyze_erf.py --source resnet101_erf_matrix.npy --heatmap_save resnet101_heatmap.png

Note this plotting script works with matplotlib 3.3.

To visualize your own model, first define a model that outputs the last feature map rather than the logits (following this example), add the code for building model and loading weights here, then

python erf/visualize_erf.py --model your_model --weights /path/to/your/weights --data_path /path/to/imagenet-1k --save_path your_model_erf_matrix.npy

We have provided the saved matrices and source code to help reproduce. To reproduce the results of Figure 3 in our paper, run

python erf/erf_slak51_convnext7_convnext31.py

Acknowledgement

The released PyTorch training script is based on the code of ConvNeXt and RepLKNet, which were built using the timm library, DeiT and BEiT repositories.

We thank the MegEngine team at MEGVII Technology and the authors of RepLKNet for releasing the efficient implementation of large-kernel convolution.

License

This project is released under the MIT license.

Contact

Shiwei Liu: [email protected]

Homepage: https://shiweiliuiiiiiii.github.io/

My open-sourced papers and repos:

  1. ITOP (ICML 2021) A concept to train sparse model to dense performance.
    Do We Actually Need Dense Over-Parameterization? In-Time Over-Parameterization in Sparse Training
    code.

  2. Selfish-RNN (ICML 2021) Selfish Sparse RNN Training.
    Selfish Sparse RNN Training
    code.

  3. GraNet (NeurIPS 2021) A State-of-the-art brain-inspired sparse training method.
    Sparse Training via Boosting Pruning Plasticity with Neuroregeneration
    code.

  4. Random_Pruning (ICLR 2022) The Unreasonable Effectiveness of Random Pruning
    The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training
    code.

  5. FreeTickets (ICLR 2022) Efficient Ensemble
    Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity.
    code.

If you find this repository useful, please consider giving a star star and cite our paper.

@article{liu2022more,
  title={More ConvNets in the 2020s: Scaling up Kernels Beyond 51x51 using Sparsity},
  author={Liu, Shiwei and Chen, Tianlong and Chen, Xiaohan and Chen, Xuxi and Xiao, Qiao and Wu, Boqian and Pechenizkiy, Mykola and Mocanu, Decebal and Wang, Zhangyang},
  journal={arXiv preprint arXiv:2207.03620},
  year={2022}
}
Open Source Agenda is not affiliated with "SLaK" Project. README Source: VITA-Group/SLaK
Stars
255
Open Issues
3
Last Commit
10 months ago
Repository
License
MIT

Open Source Agenda Badge

Open Source Agenda Rating