Rl Book Save

Source codes for the book "Reinforcement Learning: Theory and Python Implementation"

Project README

Reinforcement Learning: Theory and Python Implementation

The First Reinforcement Learning Tutorial Book with one-on-one mapping TensorFlow 2 and PyTorch 1&2 Implementation

English Edition 中文版 中文2019版
Book Book Book

Please email me if you are interested in publishing this book in other languages.

Features

This is a tutorial book on reinforcement learning, with explanation of theory and Python implementation.

  • Theory: Starting from a uniform mathematical framework, this book derives the theory and algorithms of reinforcement learning, including all major algorithms such as eligibility traces and soft actor-critic algorithms.
  • Practice: Every chapter is accompanied by high quality implementation based on Python 3, Gym 0.26, and TensorFlow 2 / PyTorch 1&2. All codes are compatible with Windows, Linux, and macOS, can be run in a laptop.

Supporting contents for English version

Check here for codes, exercise answers, etc.

Table of Codes

All codes have been saved as a .ipynb file and a .html file in the same directory.

Chapter Environment & Closed-Form Policy Agent
2 CliffWalking-v0 Bellman
3 FrozenLake-v1 DP
4 Blackjack-v1 MC
5 Taxi-v3 SARSA, ExpectedSARSA, QL, DoubleQL, SARSA(λ)
6 MountainCar-v0 SARSA, SARSA(λ), DQN tf torch, DoubleDQN tf torch, DuelDQN tf torch
7 CartPole-0 VPG tf torch, VPGwBaseline tf torch, OffPolicyVPG tf torch, OffPolicyVPGwBaseline tf torch
8 Acrobot-v1 QAC tf torch, AdvantageAC tf torch, EligibilityTraceAC tf torch, PPO tf torch, NPG tf torch, TRPO tf torch, OffPAC tf torch
9 Pendulum-v1 DDPG tf torch, TD3 tf torch
10 LunarLander-v2 SQL tf torch, SAC tf torch, SACwA tf torch
10 LunarLanderContinuous-v2 SACwA tf torch
11 BipedalWalker-v3 ES, ARS
12 PongNoFrameskip-v4 CategoricalDQN tf torch, QR-DQN tf torch, IQN tf torch
13 BernoulliMAB-v0 UCB
13 GaussianMAB-v0 UCB
14 TicTacToe-v0 AlphaZero tf torch
15 Tiger-v0 VI
16 HumanoidBulletEnv-v0 BehaviorClone tf torch, GAIL tf torch

强化学习:原理与Python实战

全球第一本配套 TensorFlow 2 和 PyTorch 1/2 对照代码的强化学习教程书

中文版书籍支持内容

  • 代码、习题答案、勘误更新等配套资源见这里

本书内容

  • 第一部分(第 1 章):从零开始介绍强化学习的背景知识,介绍环境库 Gym 的使用。
  • 第二部分(第 2~15 章):基于折扣奖励离散时间 Markov 决策过程模型,介绍强化学习的主干理论和常见算法。采用数学语言推导强化学习的基础理论,进而在理论的基础上讲解算法,并为算法提供配套代码实现。基础理论的讲解突出主干部分,算法讲解全面覆盖主流的强化学习算法,包括经典的非深度强化学习算法和近年流行的强化学习算法。 Python 实现和算法讲解一一对应,还给出了深度强化学习算法的 TensorFlow 和 PyTorch 对照实现。
  • 第三部分(第 16 章):介绍其他强化学习模型,包括平均奖励模型、连续时间模型、非齐次模型、半 Markov 模型、部分可观测模型等,以便更好了解强化学习研究的全貌。

本书特色

本书完整地介绍了主流强化学习理论。

  • 选用现代强化学习理论体系,突出主干,主要定理均给出证明过程。基于理论讲解强化学习算法,全面覆盖主流强化学习算法,包括了资格迹等经典算法和 MuZero 等深度强化学习算法。
  • 全书采用完整的数学体系,各章内容循序渐进。全书采用一致的数学符号,并兼容主流强化学习教程。
  • 每章都配有知识点总结,并搭配习题。

本书各章均提供Python代码,实战性强。

  • 简洁易懂:全书代码统一规范、简约完备,与算法讲解直接对应。
  • 查阅方便:所有代码及运行结果均在 GitHub 上展示,既可以在浏览器上查阅,也可以下载到本地运行。各算法实现放在单独的文件里,可单独查阅和运行。
  • 环境全面:既有 Gym 的内置环境,也有在 Gym 基础上进一步扩展的第三方环境,还带领读者一起实现自定义的环境。
  • 兼容性好:所有代码在三大操作系统(Windows、macOS、Linux)上均可运行,书中给出了环境的安装和配置方法。深度强化学习代码还提供了 TensorFlow 和 PyTorch 对照代码。读者可任选其一。
  • 硬件要求低:所有代码均可在没有 GPU 的个人计算机上运行。

强化学习:原理与Python实现 (2019)

全球第一本配套 TensorFlow 2 代码的强化学习教程书

中国第一本配套 TensorFlow 2 代码的纸质算法书

中文版书籍支持内容

  • 代码、勘误更新等见这里

本书特色

本书介绍强化学习理论及其 Python 实现。

  • 理论完备:全书用一套完整的数学体系,严谨地讲授强化学习的理论基础,主要定理均给出证明过程。各章内容循序渐进,覆盖了所有主流强化学习算法,包括资格迹等非深度强化学习算法和柔性执行者/评论者等深度强化学习算法。
  • 案例丰富:在您最爱的操作系统(包括 Windows、macOS、Linux)上,基于 Python 3、Gym 0.26 和 TensorFlow 2 + PyTorch 1/2,实现强化学习算法。全书实现统一规范,体积小、重量轻。第 1~9 章给出了算法的配套实现,环境部分只依赖于 Gym 的最小安装,在没有 GPU 的计算机上也可运行;第 10~12 章介绍了多个热门综合案例,涵盖 Gym 的完整安装和自定义扩展,在有普通 GPU 的计算机上即可运行。

QQ群

  • QQ群:722846914(勘误报错可发此群,其他问题提问前请先Google,群主和管理员不提供免费咨询服务)
  • 多任务群:696984257(非小白群,多任务强化学习+强化元学习+终身强化学习+迁移强化学习,勘误报错勿发此群,提问前请先Google)
  • 关于入群验证问题:由于QQ的bug,即使正确输入答案,也可能会验证失败。这时更换设备重试、更换输入法重试、改日重试均可能解决问题。如果答案中有英文字母,清注意大小写。
  • 中文版书前言中给出的QQ群(935702193、243613392和948110103)已满,不再新增群成员,谢谢理解。
Open Source Agenda is not affiliated with "Rl Book" Project. README Source: ZhiqingXiao/rl-book

Open Source Agenda Badge

Open Source Agenda Rating