Netron

Visualizer for neural network, deep learning, and machine learning models

Project README

Netron is a viewer for neural network, deep learning and machine learning models.

Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), TensorFlow Lite (.tflite), Caffe (.caffemodel, .prototxt), Darknet (.cfg), Core ML (.mlmodel), MNN (.mnn), MXNet (.model, -symbol.json), ncnn (.param), PaddlePaddle (.zip, __model__), Caffe2 (predict_net.pb), Barracuda (.nn), Tengine (.tmfile), TNN (.tnnproto), RKNN (.rknn), MindSpore Lite (.ms), UFF (.uff).

Netron has experimental support for TensorFlow (.pb, .meta, .pbtxt, .ckpt, .index), PyTorch (.pt, .pth), TorchScript (.pt, .pth), OpenVINO (.xml), Torch (.t7), Arm NN (.armnn), BigDL (.bigdl, .model), Chainer (.npz, .h5), CNTK (.model, .cntk), Deeplearning4j (.zip), MediaPipe (.pbtxt), ML.NET (.zip), scikit-learn (.pkl), TensorFlow.js (model.json, .pb).

Install

macOS: Download the .dmg file or run brew install netron

Linux: Download the .AppImage file or run snap install netron

Windows: Download the .exe installer or run winget install netron

Browser: Start the browser version.

Python Server: Run pip install netron and netron [FILE] or netron.start('[FILE]').

Models

Sample model files to download or open using the browser version:

Open Source Agenda is not affiliated with "Netron" Project. README Source: lutzroeder/netron