IntroRL Save

Intro to Reinforcement Learning (强化学习纲要)

Project README

teaser

Overview

This short RL course introduces the basic knowledge of reinforcement learning. Slides are made in English and lectures are given by Bolei Zhou in Mandarin. The course is for personal educational use only. Please open an issue if you spot some typos or errors in the slides.

Course Schedule

The course is scheduled as follows. There are 10 lectures in total, where the first one was premiered on 16 March 2020 and the last one was finished on 25 May 2020. Thanks for watching and may ReinForce be with you!

Topic Resources
Lecture1 Overview (课程概括与RL基础) slide, Youtube(part1, part2), B站(上集, 下集)
Lecture2 Markov Decision Process (马尔科夫决策过程) slide, Youtube(part1, part2), B站(上集, 下集)
Lecture3 Model-free Prediction and Control (无模型的预测和控制) slide, Youtube(part1, part2), B站(上集, 下集)
Lecture4 Value Function Approximation (价值函数近似) slide, Youtube(part1, part2), B站(上集, 下集)
Lecture5 Policy Optimization: Foundation (策略优化基础篇) slide, Youtube(part1, part2), B站(上集, 下集)
Lecture6 Policy Optimization: State of the art (策略优化进阶篇) slide, Youtube(part1, part2), B站(上集, 下集)
Lecture7 Model-based RL (基于环境模型的RL) slide, Youtube, B站
Lecture8 Imitation Learning (模仿学习) slide, Youtube, B站
Lecture9 Distributed systems for RL (分布式系统) slide, Youtube, B站
Lecture10 RL in a nutshell (课程结局篇) slide, Youtube, B站
Bonus 1 DeepMind's AlphaStar Explained (剖析星际争霸AI) by Zhenghao Peng slide, Youtube, B站
Open Source Agenda is not affiliated with "IntroRL" Project. README Source: zhoubolei/introRL
Stars
2,713
Open Issues
2
Last Commit
2 years ago
Repository
License
MIT

Open Source Agenda Badge

Open Source Agenda Rating