TensorFlowLecture Save

To make those tutorials, I referred to several tutorials including open courses, YouTube, and Books.

Project README

TensorFlowLecture

여러 강의와 교재를 보고 작성한 예제 코드들 입니다. 이론적인 정리 내용은 저의 개인 블로그에 있습니다.

개발환경

  • Ubuntu 16.04
  • Pycharm Pro and Jupyter Notebook
  • Python 3.5
  • Tensor Flow 1.4

목차

Numpy, Scipy 코드

0.1. Fundamental_Neural_Network

TensorFlow 코드

  1. Basic Example
  2. Linear Regression
  3. Logistic Classification
  4. Multiple Perceptron for XOR Problem
  5. MNIST set
  6. CNN
  7. Early Stop and Index Shuffling
  8. TensorBoard
  9. Save and Restore
  10. RNN
  11. Transfer Learning

참고자료

  • Coursera, Machine Learning (Andrew ng): URL
  • Python으로 구현된 코세라 숙제 코드: URL
  • 김성훈 교수님 강의 페이지: URL
  • 구글 공식 TensorFlow 튜토리얼: URL
  • Bay Area DL School Live Stream, Sherry Moore, tf-tutorial: URL
  • 텐서플로 코리아: URL
  • 한국인지과학협회 딥러닝 튜토리얼: URL
  • tgjeon, TensorFlow-Tutorials-for-Time-Series: URL
Open Source Agenda is not affiliated with "TensorFlowLecture" Project. README Source: leejaymin/TensorFlowLecture
Stars
31
Open Issues
0
Last Commit
2 years ago

Open Source Agenda Badge

Open Source Agenda Rating