Numpy Versions Save

The fundamental package for scientific computing with Python.

v1.25.1

9 months ago

NumPy 1.25.1 Release Notes

NumPy 1.25.1 is a maintenance release that fixes bugs and regressions discovered after the 1.25.0 release. The Python versions supported by this release are 3.9-3.11.

Contributors

A total of 10 people contributed to this release. People with a "+" by their names contributed a patch for the first time.

  • Andrew Nelson
  • Charles Harris
  • Developer-Ecosystem-Engineering
  • Hood Chatham
  • Nathan Goldbaum
  • Rohit Goswami
  • Sebastian Berg
  • Tim Paine +
  • dependabot[bot]
  • matoro +

Pull requests merged

A total of 14 pull requests were merged for this release.

  • #23968: MAINT: prepare 1.25.x for further development
  • #24036: BLD: Port long double identification to C for meson
  • #24037: BUG: Fix reduction return NULL to be goto fail
  • #24038: BUG: Avoid undefined behavior in array.astype()
  • #24039: BUG: Ensure __array_ufunc__ works without any kwargs passed
  • #24117: MAINT: Pin urllib3 to avoid anaconda-client bug.
  • #24118: TST: Pin pydantic<2 in Pyodide workflow
  • #24119: MAINT: Bump pypa/cibuildwheel from 2.13.0 to 2.13.1
  • #24120: MAINT: Bump actions/checkout from 3.5.2 to 3.5.3
  • #24122: BUG: Multiply or Divides using SIMD without a full vector can...
  • #24127: MAINT: testing for IS_MUSL closes #24074
  • #24128: BUG: Only replace dtype temporarily if dimensions changed
  • #24129: MAINT: Bump actions/setup-node from 3.6.0 to 3.7.0
  • #24134: BUG: Fix private procedures in f2py modules

Checksums

MD5

d09d98643db31e892fad11b8c2b7af22  numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl
d5b8d3b0424e2af41018f35a087c4500  numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl
1007893b1a8bfd97d445a63d29d33642  numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6a62d7a6cee310b41dc872aa7f3d7e8b  numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e81f6264aecfa2269c5d29d10c362cbc  numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl
ab8ecd125ca86eac0b3ada67ab66dad6  numpy-1.25.1-cp310-cp310-win32.whl
5466bebeaafcc3d6e1b98858d77ff945  numpy-1.25.1-cp310-cp310-win_amd64.whl
f31b059256ae09b7b83df63f52d8371e  numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl
099f74d654888869704469c321af845d  numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl
20d04dccd2bfca5cfd88780d1dc9a3f8  numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
61dfd7c00638e83a7af59b86615ee9d2  numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4eb459c3d9479c4da2fdf20e4c4085d0  numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl
5e84e797866c68ba65fa89a4bf4ba8ce  numpy-1.25.1-cp311-cp311-win32.whl
87bb1633b2e8029dbfa1e59f7ab22625  numpy-1.25.1-cp311-cp311-win_amd64.whl
3fcf2eb5970d848a26abdff1b10228e7  numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl
d71e1cbe18fe05944219e5a5be1796bf  numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl
5b457e10834c991bca84aae7eaa49f34  numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5cbb4c2f2892fafdf6f34fcb37c9e743  numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7d9d1ae23cf5420652088bfe8e048d89  numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl
7e5bed491b85f0d7c718d6809f9b3ed2  numpy-1.25.1-cp39-cp39-win32.whl
838e97b751bebadf47e2196b2c88ffa2  numpy-1.25.1-cp39-cp39-win_amd64.whl
9ba95d8d6004d9659d7728fe93f67be9  numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
fbccb20254a2dc85bdec549a03b8eb56  numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
95e36689e6dd078caf11e7e2a2d5f5f1  numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl
768d0ebf15e2242f4c7ca7565bb5dd3e  numpy-1.25.1.tar.gz

SHA256

77d339465dff3eb33c701430bcb9c325b60354698340229e1dff97745e6b3efa  numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl
d736b75c3f2cb96843a5c7f8d8ccc414768d34b0a75f466c05f3a739b406f10b  numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl
4a90725800caeaa160732d6b31f3f843ebd45d6b5f3eec9e8cc287e30f2805bf  numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6c6c9261d21e617c6dc5eacba35cb68ec36bb72adcff0dee63f8fbc899362588  numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0def91f8af6ec4bb94c370e38c575855bf1d0be8a8fbfba42ef9c073faf2cf19  numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl
fd67b306320dcadea700a8f79b9e671e607f8696e98ec255915c0c6d6b818503  numpy-1.25.1-cp310-cp310-win32.whl
c1516db588987450b85595586605742879e50dcce923e8973f79529651545b57  numpy-1.25.1-cp310-cp310-win_amd64.whl
6b82655dd8efeea69dbf85d00fca40013d7f503212bc5259056244961268b66e  numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl
e8f6049c4878cb16960fbbfb22105e49d13d752d4d8371b55110941fb3b17800  numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl
41a56b70e8139884eccb2f733c2f7378af06c82304959e174f8e7370af112e09  numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d5154b1a25ec796b1aee12ac1b22f414f94752c5f94832f14d8d6c9ac40bcca6  numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
38eb6548bb91c421261b4805dc44def9ca1a6eef6444ce35ad1669c0f1a3fc5d  numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl
791f409064d0a69dd20579345d852c59822c6aa087f23b07b1b4e28ff5880fcb  numpy-1.25.1-cp311-cp311-win32.whl
c40571fe966393b212689aa17e32ed905924120737194b5d5c1b20b9ed0fb171  numpy-1.25.1-cp311-cp311-win_amd64.whl
3d7abcdd85aea3e6cdddb59af2350c7ab1ed764397f8eec97a038ad244d2d105  numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl
1a180429394f81c7933634ae49b37b472d343cccb5bb0c4a575ac8bbc433722f  numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl
d412c1697c3853c6fc3cb9751b4915859c7afe6a277c2bf00acf287d56c4e625  numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
20e1266411120a4f16fad8efa8e0454d21d00b8c7cee5b5ccad7565d95eb42dd  numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f76aebc3358ade9eacf9bc2bb8ae589863a4f911611694103af05346637df1b7  numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl
247d3ffdd7775bdf191f848be8d49100495114c82c2bd134e8d5d075fb386a1c  numpy-1.25.1-cp39-cp39-win32.whl
1d5d3c68e443c90b38fdf8ef40e60e2538a27548b39b12b73132456847f4b631  numpy-1.25.1-cp39-cp39-win_amd64.whl
35a9527c977b924042170a0887de727cd84ff179e478481404c5dc66b4170009  numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
0d3fe3dd0506a28493d82dc3cf254be8cd0d26f4008a417385cbf1ae95b54004  numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
012097b5b0d00a11070e8f2e261128c44157a8689f7dedcf35576e525893f4fe  numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl
9a3a9f3a61480cc086117b426a8bd86869c213fc4072e606f01c4e4b66eb92bf  numpy-1.25.1.tar.gz

v1.24.4

9 months ago

NumPy 1.24.4 Release Notes

NumPy 1.24.4 is a maintenance release that fixes a few bugs discovered after the 1.24.3 release. It is the last planned release in the 1.24.x cycle. The Python versions supported by this release are 3.8-3.11.

Contributors

A total of 4 people contributed to this release. People with a "+" by their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Sebastian Berg
  • Hongyang Peng +

Pull requests merged

A total of 6 pull requests were merged for this release.

  • #23720: MAINT, BLD: Pin rtools to version 4.0 for Windows builds.
  • #23739: BUG: fix the method for checking local files for 1.24.x
  • #23760: MAINT: Copy rtools installation from install-rtools.
  • #23761: BUG: Fix masked array ravel order for A (and somewhat K)
  • #23890: TYP,DOC: Annotate and document the metadata parameter of...
  • #23994: MAINT: Update rtools installation

Checksums

MD5

25049e3aee79dde29e7a498d3ad13379  numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl
579b5c357c918feaef4af03af8afb721  numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl
c873a14fa4f0210884db9c05e2904286  numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
110a13ac016286059f0658b52b3646c0  numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fa67218966c0aef4094867cad7703648  numpy-1.24.4-cp310-cp310-win32.whl
6ee768803d8ebac43ee0a04e628a69f9  numpy-1.24.4-cp310-cp310-win_amd64.whl
0c918c16b58cb7f6773ea7d76e0bdaff  numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl
20506ae8003faf097c6b3a8915b4140e  numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl
902df9d5963e89d88a1939d94207857f  numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2543611d802c141c8276e4868b4d9619  numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
37b23a4e4e148d61dd3a515ac5dbf7ec  numpy-1.24.4-cp311-cp311-win32.whl
25e9f6bee2b65ff2a87588e717f15165  numpy-1.24.4-cp311-cp311-win_amd64.whl
f39a0cc3655a482af7d300bcaff5978e  numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl
9ed27941388fdb392e8969169f3fc600  numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl
dee3f0c7482f1dc8bd1cd27b9b028a2c  numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2cc0967af29df3caef9fb3520f14e071  numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8572a3a0973fa78355bcb5f737745b47  numpy-1.24.4-cp38-cp38-win32.whl
771c63f2ef0d31466bbb12362a532265  numpy-1.24.4-cp38-cp38-win_amd64.whl
5713d9dc3dff287fb72121fe1960c48d  numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl
4e6718e3b655219a2a733b4fa242ca32  numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl
31487f9a52ef81f8f88ec7fce8738dad  numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ea597b30187e55eb16ee31631e66f60d  numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
98adbf30c67154056474001c125f6188  numpy-1.24.4-cp39-cp39-win32.whl
49c444b0e572ef45f1d92c106a36004e  numpy-1.24.4-cp39-cp39-win_amd64.whl
cdddfdeac437b0f20b4e366f00b5c42e  numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
3778338c15628caa3abd61e6f7bd46ec  numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e16bd49d5295dc1b01ed50d76229fb54  numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl
3f3995540a17854a29dc79f8eeecd832  numpy-1.24.4.tar.gz

SHA256

c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64  numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl
ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1  numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl
79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4  numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6  numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc  numpy-1.24.4-cp310-cp310-win32.whl
b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e  numpy-1.24.4-cp310-cp310-win_amd64.whl
f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810  numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl
e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254  numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl
222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7  numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5  numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d  numpy-1.24.4-cp311-cp311-win32.whl
b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694  numpy-1.24.4-cp311-cp311-win_amd64.whl
1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61  numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl
04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f  numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl
a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e  numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc  numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2  numpy-1.24.4-cp38-cp38-win32.whl
692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706  numpy-1.24.4-cp38-cp38-win_amd64.whl
2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400  numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl
9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f  numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl
f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9  numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d  numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835  numpy-1.24.4-cp39-cp39-win32.whl
befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8  numpy-1.24.4-cp39-cp39-win_amd64.whl
31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef  numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a  numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2  numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl
80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463  numpy-1.24.4.tar.gz

v1.25.0

10 months ago

NumPy 1.25.0 Release Notes

The NumPy 1.25.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There has also been work to prepare for the future NumPy 2.0.0 release, resulting in a large number of new and expired deprecation. Highlights are:

  • Support for MUSL, there are now MUSL wheels.
  • Support the Fujitsu C/C++ compiler.
  • Object arrays are now supported in einsum
  • Support for inplace matrix multiplication (@=).

We will be releasing a NumPy 1.26 when Python 3.12 comes out. That is needed because distutils has been dropped by Python 3.12 and we will be switching to using meson for future builds. The next mainline release will be NumPy 2.0.0. We plan that the 2.0 series will still support downstream projects built against earlier versions of NumPy.

The Python versions supported in this release are 3.9-3.11.

Deprecations

  • np.core.MachAr is deprecated. It is private API. In names defined in np.core should generally be considered private.

    (gh-22638)

  • np.finfo(None) is deprecated.

    (gh-23011)

  • np.round_ is deprecated. Use np.round instead.

    (gh-23302)

  • np.product is deprecated. Use np.prod instead.

    (gh-23314)

  • np.cumproduct is deprecated. Use np.cumprod instead.

    (gh-23314)

  • np.sometrue is deprecated. Use np.any instead.

    (gh-23314)

  • np.alltrue is deprecated. Use np.all instead.

    (gh-23314)

  • Only ndim-0 arrays are treated as scalars. NumPy used to treat all arrays of size 1 (e.g., np.array([3.14])) as scalars. In the future, this will be limited to arrays of ndim 0 (e.g., np.array(3.14)). The following expressions will report a deprecation warning:

    a = np.array([3.14])
    float(a)  # better: a[0] to get the numpy.float or a.item()
    
    b = np.array([[3.14]])
    c = numpy.random.rand(10)
    c[0] = b  # better: c[0] = b[0, 0]
    

    (gh-10615)

  • numpy.find_common_type is now deprecated and its use should be replaced with either numpy.result_type or numpy.promote_types. Most users leave the second scalar_types argument to find_common_type as [] in which case np.result_type and np.promote_types are both faster and more robust. When not using scalar_types the main difference is that the replacement intentionally converts non-native byte-order to native byte order. Further, find_common_type returns object dtype rather than failing promotion. This leads to differences when the inputs are not all numeric. Importantly, this also happens for e.g. timedelta/datetime for which NumPy promotion rules are currently sometimes surprising.

    When the scalar_types argument is not [] things are more complicated. In most cases, using np.result_type and passing the Python values 0, 0.0, or 0j has the same result as using int, float, or complex in scalar_types.

    When scalar_types is constructed, np.result_type is the correct replacement and it may be passed scalar values like np.float32(0.0). Passing values other than 0, may lead to value-inspecting behavior (which np.find_common_type never used and NEP 50 may change in the future). The main possible change in behavior in this case, is when the array types are signed integers and scalar types are unsigned.

    If you are unsure about how to replace a use of scalar_types or when non-numeric dtypes are likely, please do not hesitate to open a NumPy issue to ask for help.

    (gh-22539)

Expired deprecations

  • np.core.machar and np.finfo.machar have been removed.

    (gh-22638)

  • +arr will now raise an error when the dtype is not numeric (and positive is undefined).

    (gh-22998)

  • A sequence must now be passed into the stacking family of functions (stack, vstack, hstack, dstack and column_stack).

    (gh-23019)

  • np.clip now defaults to same-kind casting. Falling back to unsafe casting was deprecated in NumPy 1.17.

    (gh-23403)

  • np.clip will now propagate np.nan values passed as min or max. Previously, a scalar NaN was usually ignored. This was deprecated in NumPy 1.17.

    (gh-23403)

  • The np.dual submodule has been removed.

    (gh-23480)

  • NumPy now always ignores sequence behavior for an array-like (defining one of the array protocols). (Deprecation started NumPy 1.20)

    (gh-23660)

  • The niche FutureWarning when casting to a subarray dtype in astype or the array creation functions such as asarray is now finalized. The behavior is now always the same as if the subarray dtype was wrapped into a single field (which was the workaround, previously). (FutureWarning since NumPy 1.20)

    (gh-23666)

  • == and != warnings have been finalized. The == and != operators on arrays now always:

    • raise errors that occur during comparisons such as when the arrays have incompatible shapes (np.array([1, 2]) == np.array([1, 2, 3])).

    • return an array of all True or all False when values are fundamentally not comparable (e.g. have different dtypes). An example is np.array(["a"]) == np.array([1]).

      This mimics the Python behavior of returning False and True when comparing incompatible types like "a" == 1 and "a" != 1. For a long time these gave DeprecationWarning or FutureWarning.

    (gh-22707)

  • Nose support has been removed. NumPy switched to using pytest in 2018 and nose has been unmaintained for many years. We have kept NumPy's nose support to avoid breaking downstream projects who might have been using it and not yet switched to pytest or some other testing framework. With the arrival of Python 3.12, unpatched nose will raise an error. It is time to move on.

    Decorators removed:

    • raises
    • slow
    • setastest
    • skipif
    • knownfailif
    • deprecated
    • parametrize
    • _needs_refcount

    These are not to be confused with pytest versions with similar names, e.g., pytest.mark.slow, pytest.mark.skipif, pytest.mark.parametrize.

    Functions removed:

    • Tester
    • import_nose
    • run_module_suite

    (gh-23041)

  • The numpy.testing.utils shim has been removed. Importing from the numpy.testing.utils shim has been deprecated since 2019, the shim has now been removed. All imports should be made directly from numpy.testing.

    (gh-23060)

  • The environment variable to disable dispatching has been removed. Support for the NUMPY_EXPERIMENTAL_ARRAY_FUNCTION environment variable has been removed. This variable disabled dispatching with __array_function__.

    (gh-23376)

  • Support for y= as an alias of out= has been removed. The fix, isposinf and isneginf functions allowed using y= as a (deprecated) alias for out=. This is no longer supported.

    (gh-23376)

Compatibility notes

  • The busday_count method now correctly handles cases where the begindates is later in time than the enddates. Previously, the enddates was included, even though the documentation states it is always excluded.

    (gh-23229)

  • When comparing datetimes and timedelta using np.equal or np.not_equal numpy previously allowed the comparison with casting="unsafe". This operation now fails. Forcing the output dtype using the dtype kwarg can make the operation succeed, but we do not recommend it.

    (gh-22707)

  • When loading data from a file handle using np.load, if the handle is at the end of file, as can happen when reading multiple arrays by calling np.load repeatedly, numpy previously raised ValueError if allow_pickle=False, and OSError if allow_pickle=True. Now it raises EOFError instead, in both cases.

    (gh-23105)

np.pad with mode=wrap pads with strict multiples of original data

Code based on earlier version of pad that uses mode="wrap" will return different results when the padding size is larger than initial array.

np.pad with mode=wrap now always fills the space with strict multiples of original data even if the padding size is larger than the initial array.

(gh-22575)

Cython long_t and ulong_t removed

long_t and ulong_t were aliases for longlong_t and ulonglong_t and confusing (a remainder from of Python 2). This change may lead to the errors:

'long_t' is not a type identifier
'ulong_t' is not a type identifier

We recommend use of bit-sized types such as cnp.int64_t or the use of cnp.intp_t which is 32 bits on 32 bit systems and 64 bits on 64 bit systems (this is most compatible with indexing). If C long is desired, use plain long or npy_long. cnp.int_t is also long (NumPy's default integer). However, long is 32 bit on 64 bit windows and we may wish to adjust this even in NumPy. (Please do not hesitate to contact NumPy developers if you are curious about this.)

(gh-22637)

Changed error message and type for bad axes argument to ufunc

The error message and type when a wrong axes value is passed to ufunc(..., axes=[...]) has changed. The message is now more indicative of the problem, and if the value is mismatched an AxisError will be raised. A TypeError will still be raised for invalidinput types.

(gh-22675)

Array-likes that define __array_ufunc__ can now override ufuncs if used as where

If the where keyword argument of a numpy.ufunc{.interpreted-text role="class"} is a subclass of numpy.ndarray{.interpreted-text role="class"} or is a duck type that defines numpy.class.__array_ufunc__{.interpreted-text role="func"} it can override the behavior of the ufunc using the same mechanism as the input and output arguments. Note that for this to work properly, the where.__array_ufunc__ implementation will have to unwrap the where argument to pass it into the default implementation of the ufunc or, for numpy.ndarray{.interpreted-text role="class"} subclasses before using super().__array_ufunc__.

(gh-23240)

Compiling against the NumPy C API is now backwards compatible by default

NumPy now defaults to exposing a backwards compatible subset of the C-API. This makes the use of oldest-supported-numpy unnecessary. Libraries can override the default minimal version to be compatible with using:

#define NPY_TARGET_VERSION NPY_1_22_API_VERSION

before including NumPy or by passing the equivalent -D option to the compiler. The NumPy 1.25 default is NPY_1_19_API_VERSION. Because the NumPy 1.19 C API was identical to the NumPy 1.16 one resulting programs will be compatible with NumPy 1.16 (from a C-API perspective). This default will be increased in future non-bugfix releases. You can still compile against an older NumPy version and run on a newer one.

For more details please see for-downstream-package-authors{.interpreted-text role="ref"}.

(gh-23528)

New Features

np.einsum now accepts arrays with object dtype

The code path will call python operators on object dtype arrays, much like np.dot and np.matmul.

(gh-18053)

Add support for inplace matrix multiplication

It is now possible to perform inplace matrix multiplication via the @= operator.

>>> import numpy as np

>>> a = np.arange(6).reshape(3, 2)
>>> print(a)
[[0 1]
 [2 3]
 [4 5]]

>>> b = np.ones((2, 2), dtype=int)
>>> a @= b
>>> print(a)
[[1 1]
 [5 5]
 [9 9]]

(gh-21120)

Added NPY_ENABLE_CPU_FEATURES environment variable

Users may now choose to enable only a subset of the built CPU features at runtime by specifying the NPY_ENABLE_CPU_FEATURES environment variable. Note that these specified features must be outside the baseline, since those are always assumed. Errors will be raised if attempting to enable a feature that is either not supported by your CPU, or that NumPy was not built with.

(gh-22137)

NumPy now has an np.exceptions namespace

NumPy now has a dedicated namespace making most exceptions and warnings available. All of these remain available in the main namespace, although some may be moved slowly in the future. The main reason for this is to increase discoverability and add future exceptions.

(gh-22644)

np.linalg functions return NamedTuples

np.linalg functions that return tuples now return namedtuples. These functions are eig(), eigh(), qr(), slogdet(), and svd(). The return type is unchanged in instances where these functions return non-tuples with certain keyword arguments (like svd(compute_uv=False)).

(gh-22786)

String functions in np.char are compatible with NEP 42 custom dtypes

Custom dtypes that represent unicode strings or byte strings can now be passed to the string functions in np.char.

(gh-22863)

String dtype instances can be created from the string abstract dtype classes

It is now possible to create a string dtype instance with a size without using the string name of the dtype. For example, type(np.dtype('U'))(8) will create a dtype that is equivalent to np.dtype('U8'). This feature is most useful when writing generic code dealing with string dtype classes.

(gh-22963)

Fujitsu C/C++ compiler is now supported

Support for Fujitsu compiler has been added. To build with Fujitsu compiler, run:

python setup.py build -c fujitsu

SSL2 is now supported

Support for SSL2 has been added. SSL2 is a library that provides OpenBLAS compatible GEMM functions. To enable SSL2, it need to edit site.cfg and build with Fujitsu compiler. See site.cfg.example.

(gh-22982)

Improvements

NDArrayOperatorsMixin specifies that it has no __slots__

The NDArrayOperatorsMixin class now specifies that it contains no __slots__, ensuring that subclasses can now make use of this feature in Python.

(gh-23113)

Fix power of complex zero

np.power now returns a different result for 0^{non-zero} for complex numbers. Note that the value is only defined when the real part of the exponent is larger than zero. Previously, NaN was returned unless the imaginary part was strictly zero. The return value is either 0+0j or 0-0j.

(gh-18535)

New DTypePromotionError

NumPy now has a new DTypePromotionError which is used when two dtypes cannot be promoted to a common one, for example:

np.result_type("M8[s]", np.complex128)

raises this new exception.

(gh-22707)

np.show_config uses information from Meson

Build and system information now contains information from Meson. np.show_config now has a new optional parameter mode to help customize the output.

(gh-22769)

Fix np.ma.diff not preserving the mask when called with arguments prepend/append.

Calling np.ma.diff with arguments prepend and/or append now returns a MaskedArray with the input mask preserved.

Previously, a MaskedArray without the mask was returned.

(gh-22776)

Corrected error handling for NumPy C-API in Cython

Many NumPy C functions defined for use in Cython were lacking the correct error indicator like except -1 or except *. These have now been added.

(gh-22997)

Ability to directly spawn random number generators

numpy.random.Generator.spawn now allows to directly spawn new independent child generators via the numpy.random.SeedSequence.spawn mechanism. numpy.random.BitGenerator.spawn does the same for the underlying bit generator.

Additionally, numpy.random.BitGenerator.seed_seq now gives direct access to the seed sequence used for initializing the bit generator. This allows for example:

seed = 0x2e09b90939db40c400f8f22dae617151
rng = np.random.default_rng(seed)
child_rng1, child_rng2 = rng.spawn(2)

# safely use rng, child_rng1, and child_rng2

Previously, this was hard to do without passing the SeedSequence explicitly. Please see numpy.random.SeedSequence for more information.

(gh-23195)

numpy.logspace now supports a non-scalar base argument

The base argument of numpy.logspace can now be array-like if it is broadcastable against the start and stop arguments.

(gh-23275)

np.ma.dot() now supports for non-2d arrays

Previously np.ma.dot() only worked if a and b were both 2d. Now it works for non-2d arrays as well as np.dot().

(gh-23322)

Explicitly show keys of .npz file in repr

NpzFile shows keys of loaded .npz file when printed.

>>> npzfile = np.load('arr.npz')
>>> npzfile
NpzFile 'arr.npz' with keys arr_0, arr_1, arr_2, arr_3, arr_4...

(gh-23357)

NumPy now exposes DType classes in np.dtypes

The new numpy.dtypes module now exposes DType classes and will contain future dtype related functionality. Most users should have no need to use these classes directly.

(gh-23358)

Drop dtype metadata before saving in .npy or .npz files

Currently, a *.npy file containing a table with a dtype with metadata cannot be read back. Now, np.save and np.savez drop metadata before saving.

(gh-23371)

numpy.lib.recfunctions.structured_to_unstructured returns views in more cases

structured_to_unstructured now returns a view, if the stride between the fields is constant. Prior, padding between the fields or a reversed field would lead to a copy. This change only applies to ndarray, memmap and recarray. For all other array subclasses, the behavior remains unchanged.

(gh-23652)

Signed and unsigned integers always compare correctly

When uint64 and int64 are mixed in NumPy, NumPy typically promotes both to float64. This behavior may be argued about but is confusing for comparisons ==, <=, since the results returned can be incorrect but the conversion is hidden since the result is a boolean. NumPy will now return the correct results for these by avoiding the cast to float.

(gh-23713)

Performance improvements and changes

Faster np.argsort on AVX-512 enabled processors

32-bit and 64-bit quicksort algorithm for np.argsort gain up to 6x speed up on processors that support AVX-512 instruction set.

Thanks to Intel corporation for sponsoring this work.

(gh-23707)

Faster np.sort on AVX-512 enabled processors

Quicksort for 16-bit and 64-bit dtypes gain up to 15x and 9x speed up on processors that support AVX-512 instruction set.

Thanks to Intel corporation for sponsoring this work.

(gh-22315)

__array_function__ machinery is now much faster

The overhead of the majority of functions in NumPy is now smaller especially when keyword arguments are used. This change significantly speeds up many simple function calls.

(gh-23020)

ufunc.at can be much faster

Generic ufunc.at can be up to 9x faster. The conditions for this speedup:

  • operands are aligned
  • no casting

If ufuncs with appropriate indexed loops on 1d arguments with the above conditions, ufunc.at can be up to 60x faster (an additional 7x speedup). Appropriate indexed loops have been added to add, subtract, multiply, floor_divide, maximum, minimum, fmax, and fmin.

The internal logic is similar to the logic used for regular ufuncs, which also have fast paths.

Thanks to the D. E. Shaw group for sponsoring this work.

(gh-23136)

Faster membership test on NpzFile

Membership test on NpzFile will no longer decompress the archive if it is successful.

(gh-23661)

Changes

np.r_[] and np.c_[] with certain scalar values

In rare cases, using mainly np.r_ with scalars can lead to different results. The main potential changes are highlighted by the following:

>>> np.r_[np.arange(5, dtype=np.uint8), -1].dtype
int16  # rather than the default integer (int64 or int32)
>>> np.r_[np.arange(5, dtype=np.int8), 255]
array([  0,   1,   2,   3,   4, 255], dtype=int16)

Where the second example returned:

array([ 0,  1,  2,  3,  4, -1], dtype=int8)

The first one is due to a signed integer scalar with an unsigned integer array, while the second is due to 255 not fitting into int8 and NumPy currently inspecting values to make this work. (Note that the second example is expected to change in the future due to NEP 50 <NEP50>{.interpreted-text role="ref"}; it will then raise an error.)

(gh-22539)

Most NumPy functions are wrapped into a C-callable

To speed up the __array_function__ dispatching, most NumPy functions are now wrapped into C-callables and are not proper Python functions or C methods. They still look and feel the same as before (like a Python function), and this should only improve performance and user experience (cleaner tracebacks). However, please inform the NumPy developers if this change confuses your program for some reason.

(gh-23020)

C++ standard library usage

NumPy builds now depend on the C++ standard library, because the numpy.core._multiarray_umath extension is linked with the C++ linker.

(gh-23601)

Checksums

MD5

4657f046d9d9d62e4baeae9b2cc1b4ea  numpy-1.25.0-cp310-cp310-macosx_10_9_x86_64.whl
f57f98fee3da2d98f752f755a880a508  numpy-1.25.0-cp310-cp310-macosx_11_0_arm64.whl
72b0ad52f96a41a7a82f511cb35c7ef1  numpy-1.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a61227341b8903fa66ab0e0fdaa15430  numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bfccabfbd866c59545ce11ecdac60701  numpy-1.25.0-cp310-cp310-musllinux_1_1_x86_64.whl
22402904f194376b8d2de01481f04b03  numpy-1.25.0-cp310-cp310-win32.whl
e983b193f7d63568eac85d8bda8be62e  numpy-1.25.0-cp310-cp310-win_amd64.whl
5f6477db172f59a4fd7f591e1007e632  numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl
6a85cca47af69e3d45b4efab9490af4d  numpy-1.25.0-cp311-cp311-macosx_11_0_arm64.whl
ad1c0b4b406c9a2f1b42792502bc456b  numpy-1.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
39e241f265611a9c1e89499054ead1c9  numpy-1.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e36b37acf1acfbc185face67c67bfe09  numpy-1.25.0-cp311-cp311-musllinux_1_1_x86_64.whl
67862d7849b4f0f943760142f1628aed  numpy-1.25.0-cp311-cp311-win32.whl
6e8ed7865792246cac2213bad404f4da  numpy-1.25.0-cp311-cp311-win_amd64.whl
25e843425697364f50dd7288ff9d2ce1  numpy-1.25.0-cp39-cp39-macosx_10_9_x86_64.whl
58641e53bcb1e13dfed1f5af1aff94bc  numpy-1.25.0-cp39-cp39-macosx_11_0_arm64.whl
ce15327793c39beecee8401356bc6c9b  numpy-1.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
34b734a2c7698d59954c29fe7c0536f3  numpy-1.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6652d9df23c84e54466b10f4a2a290be  numpy-1.25.0-cp39-cp39-musllinux_1_1_x86_64.whl
c228105e3c4c8887823d99e35eea9d2b  numpy-1.25.0-cp39-cp39-win32.whl
1322210ae6a874293d13c4bb3abf24ee  numpy-1.25.0-cp39-cp39-win_amd64.whl
dc36096628e65077c2a44c493606c668  numpy-1.25.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
942b4276f8d563efb111921d5995834c  numpy-1.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0fa0734a8ff952dd643e7b9826168099  numpy-1.25.0-pp39-pypy39_pp73-win_amd64.whl
b236497153bc19b4a560ac485e4c2754  numpy-1.25.0.tar.gz

SHA256

8aa130c3042052d656751df5e81f6d61edff3e289b5994edcf77f54118a8d9f4  numpy-1.25.0-cp310-cp310-macosx_10_9_x86_64.whl
9e3f2b96e3b63c978bc29daaa3700c028fe3f049ea3031b58aa33fe2a5809d24  numpy-1.25.0-cp310-cp310-macosx_11_0_arm64.whl
d6b267f349a99d3908b56645eebf340cb58f01bd1e773b4eea1a905b3f0e4208  numpy-1.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4aedd08f15d3045a4e9c648f1e04daca2ab1044256959f1f95aafeeb3d794c16  numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6d183b5c58513f74225c376643234c369468e02947b47942eacbb23c1671f25d  numpy-1.25.0-cp310-cp310-musllinux_1_1_x86_64.whl
d76a84998c51b8b68b40448ddd02bd1081bb33abcdc28beee6cd284fe11036c6  numpy-1.25.0-cp310-cp310-win32.whl
c0dc071017bc00abb7d7201bac06fa80333c6314477b3d10b52b58fa6a6e38f6  numpy-1.25.0-cp310-cp310-win_amd64.whl
4c69fe5f05eea336b7a740e114dec995e2f927003c30702d896892403df6dbf0  numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl
9c7211d7920b97aeca7b3773a6783492b5b93baba39e7c36054f6e749fc7490c  numpy-1.25.0-cp311-cp311-macosx_11_0_arm64.whl
ecc68f11404930e9c7ecfc937aa423e1e50158317bf67ca91736a9864eae0232  numpy-1.25.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e559c6afbca484072a98a51b6fa466aae785cfe89b69e8b856c3191bc8872a82  numpy-1.25.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6c284907e37f5e04d2412950960894b143a648dea3f79290757eb878b91acbd1  numpy-1.25.0-cp311-cp311-musllinux_1_1_x86_64.whl
95367ccd88c07af21b379be1725b5322362bb83679d36691f124a16357390153  numpy-1.25.0-cp311-cp311-win32.whl
b76aa836a952059d70a2788a2d98cb2a533ccd46222558b6970348939e55fc24  numpy-1.25.0-cp311-cp311-win_amd64.whl
b792164e539d99d93e4e5e09ae10f8cbe5466de7d759fc155e075237e0c274e4  numpy-1.25.0-cp39-cp39-macosx_10_9_x86_64.whl
7cd981ccc0afe49b9883f14761bb57c964df71124dcd155b0cba2b591f0d64b9  numpy-1.25.0-cp39-cp39-macosx_11_0_arm64.whl
5aa48bebfb41f93043a796128854b84407d4df730d3fb6e5dc36402f5cd594c0  numpy-1.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5177310ac2e63d6603f659fadc1e7bab33dd5a8db4e0596df34214eeab0fee3b  numpy-1.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0ac6edfb35d2a99aaf102b509c8e9319c499ebd4978df4971b94419a116d0790  numpy-1.25.0-cp39-cp39-musllinux_1_1_x86_64.whl
7412125b4f18aeddca2ecd7219ea2d2708f697943e6f624be41aa5f8a9852cc4  numpy-1.25.0-cp39-cp39-win32.whl
26815c6c8498dc49d81faa76d61078c4f9f0859ce7817919021b9eba72b425e3  numpy-1.25.0-cp39-cp39-win_amd64.whl
5b1b90860bf7d8a8c313b372d4f27343a54f415b20fb69dd601b7efe1029c91e  numpy-1.25.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
85cdae87d8c136fd4da4dad1e48064d700f63e923d5af6c8c782ac0df8044542  numpy-1.25.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc3fda2b36482891db1060f00f881c77f9423eead4c3579629940a3e12095fe8  numpy-1.25.0-pp39-pypy39_pp73-win_amd64.whl
f1accae9a28dc3cda46a91de86acf69de0d1b5f4edd44a9b0c3ceb8036dfff19  numpy-1.25.0.tar.gz

v1.24.3

11 months ago

NumPy 1.24.3 Release Notes

NumPy 1.24.3 is a maintenance release that fixes bugs and regressions discovered after the 1.24.2 release. The Python versions supported by this release are 3.8-3.11.

Contributors

A total of 12 people contributed to this release. People with a "+" by their names contributed a patch for the first time.

  • Aleksei Nikiforov +
  • Alexander Heger
  • Bas van Beek
  • Bob Eldering
  • Brock Mendel
  • Charles Harris
  • Kyle Sunden
  • Peter Hawkins
  • Rohit Goswami
  • Sebastian Berg
  • Warren Weckesser
  • dependabot[bot]

Pull requests merged

A total of 17 pull requests were merged for this release.

  • #23206: BUG: fix for f2py string scalars (#23194)
  • #23207: BUG: datetime64/timedelta64 comparisons return NotImplemented
  • #23208: MAINT: Pin matplotlib to version 3.6.3 for refguide checks
  • #23221: DOC: Fix matplotlib error in documentation
  • #23226: CI: Ensure submodules are initialized in gitpod.
  • #23341: TYP: Replace duplicate reduce in ufunc type signature with reduceat.
  • #23342: TYP: Remove duplicate CLIP/WRAP/RAISE in __init__.pyi.
  • #23343: TYP: Mark d argument to fftfreq and rfftfreq as optional...
  • #23344: TYP: Add type annotations for comparison operators to MaskedArray.
  • #23345: TYP: Remove some stray type-check-only imports of msort
  • #23370: BUG: Ensure like is only stripped for like= dispatched functions
  • #23543: BUG: fix loading and storing big arrays on s390x
  • #23544: MAINT: Bump larsoner/circleci-artifacts-redirector-action
  • #23634: BUG: Ignore invalid and overflow warnings in masked setitem
  • #23635: BUG: Fix masked array raveling when order="A" or order="K"
  • #23636: MAINT: Update conftest for newer hypothesis versions
  • #23637: BUG: Fix bug in parsing F77 style string arrays.

Checksums

MD5

93a3ce07e3773842c54d831f18e3eb8d  numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl
39691ff3d1612438dfcd3266c9765aab  numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl
a99234799a239e7e9c6fa15c212996df  numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3673aa638746851dd19d5199e1eb3a91  numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3c72962360bcd0938a6bddee6cdca766  numpy-1.24.3-cp310-cp310-win32.whl
a3329efa646012fa4ee06ce5e08eadaf  numpy-1.24.3-cp310-cp310-win_amd64.whl
5323fb0323d1ec10ee3c35a2fa79cbcd  numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl
cfa001dcd07cdf6414ced433e88959d4  numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl
d75bbfb06ed00d04232dce0e865eb42c  numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
fe18b810bcf284572467ce585dbc533b  numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e97699a4ef96a81e0916bdf15440abe0  numpy-1.24.3-cp311-cp311-win32.whl
e6de5b7d77dc43ed47f516eb10bbe8b6  numpy-1.24.3-cp311-cp311-win_amd64.whl
dd04ebf441a8913f4900b56e7a33a75e  numpy-1.24.3-cp38-cp38-macosx_10_9_x86_64.whl
e47ac5521b0bfc3effb040072d8a7902  numpy-1.24.3-cp38-cp38-macosx_11_0_arm64.whl
7b7dae3309e7ca8a8859633a5d337431  numpy-1.24.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8cc87b88163ed84e70c48fd0f5f8f20e  numpy-1.24.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
350934bae971d0ebe231a59b640069db  numpy-1.24.3-cp38-cp38-win32.whl
c4708ef009bb5d427ea94a4fc4a10e12  numpy-1.24.3-cp38-cp38-win_amd64.whl
44b08a293a4e12d62c27b8f15ba5664e  numpy-1.24.3-cp39-cp39-macosx_10_9_x86_64.whl
3ae7ac30f86c720e42b2324a0ae1adf5  numpy-1.24.3-cp39-cp39-macosx_11_0_arm64.whl
065464a8d918c670c7863d1e72e3e6dd  numpy-1.24.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1f163b9ea417c253e84480aa8d99dee6  numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c86e648389e333e062bea11c749b9a32  numpy-1.24.3-cp39-cp39-win32.whl
bfe332e577c604d6d62a57381e6aa0a6  numpy-1.24.3-cp39-cp39-win_amd64.whl
374695eeef5aca32a5b7f2f518dd3ba1  numpy-1.24.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
6abd9dba54405182e6e7bb32dbe377bb  numpy-1.24.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0848bd41c08dd5ebbc5a7f0788678e0e  numpy-1.24.3-pp38-pypy38_pp73-win_amd64.whl
89e5e2e78407032290ae6acf6dcaea46  numpy-1.24.3.tar.gz

SHA256

3c1104d3c036fb81ab923f507536daedc718d0ad5a8707c6061cdfd6d184e570  numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl
202de8f38fc4a45a3eea4b63e2f376e5f2dc64ef0fa692838e31a808520efaf7  numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl
8535303847b89aa6b0f00aa1dc62867b5a32923e4d1681a35b5eef2d9591a463  numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2d926b52ba1367f9acb76b0df6ed21f0b16a1ad87c6720a1121674e5cf63e2b6  numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f21c442fdd2805e91799fbe044a7b999b8571bb0ab0f7850d0cb9641a687092b  numpy-1.24.3-cp310-cp310-win32.whl
ab5f23af8c16022663a652d3b25dcdc272ac3f83c3af4c02eb8b824e6b3ab9d7  numpy-1.24.3-cp310-cp310-win_amd64.whl
9a7721ec204d3a237225db3e194c25268faf92e19338a35f3a224469cb6039a3  numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl
d6cc757de514c00b24ae8cf5c876af2a7c3df189028d68c0cb4eaa9cd5afc2bf  numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl
76e3f4e85fc5d4fd311f6e9b794d0c00e7002ec122be271f2019d63376f1d385  numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a1d3c026f57ceaad42f8231305d4653d5f05dc6332a730ae5c0bea3513de0950  numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c91c4afd8abc3908e00a44b2672718905b8611503f7ff87390cc0ac3423fb096  numpy-1.24.3-cp311-cp311-win32.whl
5342cf6aad47943286afa6f1609cad9b4266a05e7f2ec408e2cf7aea7ff69d80  numpy-1.24.3-cp311-cp311-win_amd64.whl
7776ea65423ca6a15255ba1872d82d207bd1e09f6d0894ee4a64678dd2204078  numpy-1.24.3-cp38-cp38-macosx_10_9_x86_64.whl
ae8d0be48d1b6ed82588934aaaa179875e7dc4f3d84da18d7eae6eb3f06c242c  numpy-1.24.3-cp38-cp38-macosx_11_0_arm64.whl
ecde0f8adef7dfdec993fd54b0f78183051b6580f606111a6d789cd14c61ea0c  numpy-1.24.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4749e053a29364d3452c034827102ee100986903263e89884922ef01a0a6fd2f  numpy-1.24.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d933fabd8f6a319e8530d0de4fcc2e6a61917e0b0c271fded460032db42a0fe4  numpy-1.24.3-cp38-cp38-win32.whl
56e48aec79ae238f6e4395886b5eaed058abb7231fb3361ddd7bfdf4eed54289  numpy-1.24.3-cp38-cp38-win_amd64.whl
4719d5aefb5189f50887773699eaf94e7d1e02bf36c1a9d353d9f46703758ca4  numpy-1.24.3-cp39-cp39-macosx_10_9_x86_64.whl
0ec87a7084caa559c36e0a2309e4ecb1baa03b687201d0a847c8b0ed476a7187  numpy-1.24.3-cp39-cp39-macosx_11_0_arm64.whl
ea8282b9bcfe2b5e7d491d0bf7f3e2da29700cec05b49e64d6246923329f2b02  numpy-1.24.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
210461d87fb02a84ef243cac5e814aad2b7f4be953b32cb53327bb49fd77fbb4  numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
784c6da1a07818491b0ffd63c6bbe5a33deaa0e25a20e1b3ea20cf0e43f8046c  numpy-1.24.3-cp39-cp39-win32.whl
d5036197ecae68d7f491fcdb4df90082b0d4960ca6599ba2659957aafced7c17  numpy-1.24.3-cp39-cp39-win_amd64.whl
352ee00c7f8387b44d19f4cada524586f07379c0d49270f87233983bc5087ca0  numpy-1.24.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
1a7d6acc2e7524c9955e5c903160aa4ea083736fde7e91276b0e5d98e6332812  numpy-1.24.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
35400e6a8d102fd07c71ed7dcadd9eb62ee9a6e84ec159bd48c28235bbb0f8e4  numpy-1.24.3-pp38-pypy38_pp73-win_amd64.whl
ab344f1bf21f140adab8e47fdbc7c35a477dc01408791f8ba00d018dd0bc5155  numpy-1.24.3.tar.gz

v1.24.2

1 year ago

NumPy 1.24.2 Release Notes

NumPy 1.24.2 is a maintenance release that fixes bugs and regressions discovered after the 1.24.1 release. The Python versions supported by this release are 3.8-3.11.

Contributors

A total of 14 people contributed to this release. People with a "+" by their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Khem Raj +
  • Mark Harfouche
  • Matti Picus
  • Panagiotis Zestanakis +
  • Peter Hawkins
  • Pradipta Ghosh
  • Ross Barnowski
  • Sayed Adel
  • Sebastian Berg
  • Syam Gadde +
  • dmbelov +
  • pkubaj +

Pull requests merged

A total of 17 pull requests were merged for this release.

  • #22965: MAINT: Update python 3.11-dev to 3.11.
  • #22966: DOC: Remove dangling deprecation warning
  • #22967: ENH: Detect CPU features on FreeBSD/powerpc64*
  • #22968: BUG: np.loadtxt cannot load text file with quoted fields separated...
  • #22969: TST: Add fixture to avoid issue with randomizing test order.
  • #22970: BUG: Fix fill violating read-only flag. (#22959)
  • #22971: MAINT: Add additional information to missing scalar AttributeError
  • #22972: MAINT: Move export for scipy arm64 helper into main module
  • #22976: BUG, SIMD: Fix spurious invalid exception for sin/cos on arm64/clang
  • #22989: BUG: Ensure correct loop order in sin, cos, and arctan2
  • #23030: DOC: Add version added information for the strict parameter in...
  • #23031: BUG: use _Alignof rather than offsetof() on most compilers
  • #23147: BUG: Fix for npyv__trunc_s32_f32 (VXE)
  • #23148: BUG: Fix integer / float scalar promotion
  • #23149: BUG: Add missing <type_traits> header.
  • #23150: TYP, MAINT: Add a missing explicit Any parameter to the npt.ArrayLike...
  • #23161: BLD: remove redundant definition of npy_nextafter [wheel build]

Checksums

MD5

73fe0b507f56c0baf43171a76ad2003f  numpy-1.24.2-cp310-cp310-macosx_10_9_x86_64.whl
2dbbe6f8a14e14978d24de9fcc8b49fe  numpy-1.24.2-cp310-cp310-macosx_11_0_arm64.whl
9ddadbf9cac2742318d8b292cb9ca579  numpy-1.24.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
969f4f33baaff53dbbbaf1a146c43534  numpy-1.24.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6df575dff02feac835d22debb15d190e  numpy-1.24.2-cp310-cp310-win32.whl
2f939228a8c33265f2a8a1fce349d6f1  numpy-1.24.2-cp310-cp310-win_amd64.whl
c093e61421be01ffff435387839949f1  numpy-1.24.2-cp311-cp311-macosx_10_9_x86_64.whl
03d71e3d9a086b56837c461fd7c9188b  numpy-1.24.2-cp311-cp311-macosx_11_0_arm64.whl
c0dc33697d156e2b9a029095efeb1b10  numpy-1.24.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
13b57957a1f40e13f8826d14b031a6fe  numpy-1.24.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5afd966db0b59655618c1859d98d87f6  numpy-1.24.2-cp311-cp311-win32.whl
e0b850f9c20871cd65ecb35235688f4d  numpy-1.24.2-cp311-cp311-win_amd64.whl
9a30452135ab0387b8ea9007e94e9f81  numpy-1.24.2-cp38-cp38-macosx_10_9_x86_64.whl
bdd6eede4524a230574b37e1f631f2c0  numpy-1.24.2-cp38-cp38-macosx_11_0_arm64.whl
4f930a9030d77d45a1cb6f374c91fb53  numpy-1.24.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e77155c010f9dd63ea2815579a28c503  numpy-1.24.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1a45f4373945eaeabeaa4020ce04e8fd  numpy-1.24.2-cp38-cp38-win32.whl
66e93d70fad16b4ccb4531e31aad36e3  numpy-1.24.2-cp38-cp38-win_amd64.whl
93a4984da83c6811367d3daf709ed25c  numpy-1.24.2-cp39-cp39-macosx_10_9_x86_64.whl
e0281b96c490ba00f1382eb3984b4e51  numpy-1.24.2-cp39-cp39-macosx_11_0_arm64.whl
ce97d81e4ae6e10241d471492391b1be  numpy-1.24.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0c0ea440190705f98abeaa856e7da690  numpy-1.24.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c25f7fbb185f1b8f7761bc22082d9939  numpy-1.24.2-cp39-cp39-win32.whl
7705c6b0bcf22b5e64cf248144b2f554  numpy-1.24.2-cp39-cp39-win_amd64.whl
07b6361e36e0093b580dc05799b1f03d  numpy-1.24.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
4c1466ae486b39d1a35aacb46256ec1e  numpy-1.24.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4fea9d95e0489d06c3a24a87697d2fc0  numpy-1.24.2-pp38-pypy38_pp73-win_amd64.whl
c4212a8da1ecf17ece37e2afd0319806  numpy-1.24.2.tar.gz

SHA256

eef70b4fc1e872ebddc38cddacc87c19a3709c0e3e5d20bf3954c147b1dd941d  numpy-1.24.2-cp310-cp310-macosx_10_9_x86_64.whl
e8d2859428712785e8a8b7d2b3ef0a1d1565892367b32f915c4a4df44d0e64f5  numpy-1.24.2-cp310-cp310-macosx_11_0_arm64.whl
6524630f71631be2dabe0c541e7675db82651eb998496bbe16bc4f77f0772253  numpy-1.24.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a51725a815a6188c662fb66fb32077709a9ca38053f0274640293a14fdd22978  numpy-1.24.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2620e8592136e073bd12ee4536149380695fbe9ebeae845b81237f986479ffc9  numpy-1.24.2-cp310-cp310-win32.whl
97cf27e51fa078078c649a51d7ade3c92d9e709ba2bfb97493007103c741f1d0  numpy-1.24.2-cp310-cp310-win_amd64.whl
7de8fdde0003f4294655aa5d5f0a89c26b9f22c0a58790c38fae1ed392d44a5a  numpy-1.24.2-cp311-cp311-macosx_10_9_x86_64.whl
4173bde9fa2a005c2c6e2ea8ac1618e2ed2c1c6ec8a7657237854d42094123a0  numpy-1.24.2-cp311-cp311-macosx_11_0_arm64.whl
4cecaed30dc14123020f77b03601559fff3e6cd0c048f8b5289f4eeabb0eb281  numpy-1.24.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9a23f8440561a633204a67fb44617ce2a299beecf3295f0d13c495518908e910  numpy-1.24.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e428c4fbfa085f947b536706a2fc349245d7baa8334f0c5723c56a10595f9b95  numpy-1.24.2-cp311-cp311-win32.whl
557d42778a6869c2162deb40ad82612645e21d79e11c1dc62c6e82a2220ffb04  numpy-1.24.2-cp311-cp311-win_amd64.whl
d0a2db9d20117bf523dde15858398e7c0858aadca7c0f088ac0d6edd360e9ad2  numpy-1.24.2-cp38-cp38-macosx_10_9_x86_64.whl
c72a6b2f4af1adfe193f7beb91ddf708ff867a3f977ef2ec53c0ffb8283ab9f5  numpy-1.24.2-cp38-cp38-macosx_11_0_arm64.whl
c29e6bd0ec49a44d7690ecb623a8eac5ab8a923bce0bea6293953992edf3a76a  numpy-1.24.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2eabd64ddb96a1239791da78fa5f4e1693ae2dadc82a76bc76a14cbb2b966e96  numpy-1.24.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e3ab5d32784e843fc0dd3ab6dcafc67ef806e6b6828dc6af2f689be0eb4d781d  numpy-1.24.2-cp38-cp38-win32.whl
76807b4063f0002c8532cfeac47a3068a69561e9c8715efdad3c642eb27c0756  numpy-1.24.2-cp38-cp38-win_amd64.whl
4199e7cfc307a778f72d293372736223e39ec9ac096ff0a2e64853b866a8e18a  numpy-1.24.2-cp39-cp39-macosx_10_9_x86_64.whl
adbdce121896fd3a17a77ab0b0b5eedf05a9834a18699db6829a64e1dfccca7f  numpy-1.24.2-cp39-cp39-macosx_11_0_arm64.whl
889b2cc88b837d86eda1b17008ebeb679d82875022200c6e8e4ce6cf549b7acb  numpy-1.24.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f64bb98ac59b3ea3bf74b02f13836eb2e24e48e0ab0145bbda646295769bd780  numpy-1.24.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
63e45511ee4d9d976637d11e6c9864eae50e12dc9598f531c035265991910468  numpy-1.24.2-cp39-cp39-win32.whl
a77d3e1163a7770164404607b7ba3967fb49b24782a6ef85d9b5f54126cc39e5  numpy-1.24.2-cp39-cp39-win_amd64.whl
92011118955724465fb6853def593cf397b4a1367495e0b59a7e69d40c4eb71d  numpy-1.24.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
f9006288bcf4895917d02583cf3411f98631275bc67cce355a7f39f8c14338fa  numpy-1.24.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
150947adbdfeceec4e5926d956a06865c1c690f2fd902efede4ca6fe2e657c3f  numpy-1.24.2-pp38-pypy38_pp73-win_amd64.whl
003a9f530e880cb2cd177cba1af7220b9aa42def9c4afc2a2fc3ee6be7eb2b22  numpy-1.24.2.tar.gz

v1.24.1

1 year ago

NumPy 1.24.1 Release Notes

NumPy 1.24.1 is a maintenance release that fixes bugs and regressions discovered after the 1.24.0 release. The Python versions supported by this release are 3.8-3.11.

Contributors

A total of 12 people contributed to this release. People with a "+" by their names contributed a patch for the first time.

  • Andrew Nelson
  • Ben Greiner +
  • Charles Harris
  • Clément Robert
  • Matteo Raso
  • Matti Picus
  • Melissa Weber Mendonça
  • Miles Cranmer
  • Ralf Gommers
  • Rohit Goswami
  • Sayed Adel
  • Sebastian Berg

Pull requests merged

A total of 18 pull requests were merged for this release.

  • #22820: BLD: add workaround in setup.py for newer setuptools
  • #22830: BLD: CIRRUS_TAG redux
  • #22831: DOC: fix a couple typos in 1.23 notes
  • #22832: BUG: Fix refcounting errors found using pytest-leaks
  • #22834: BUG, SIMD: Fix invalid value encountered in several ufuncs
  • #22837: TST: ignore more np.distutils.log imports
  • #22839: BUG: Do not use getdata() in np.ma.masked_invalid
  • #22847: BUG: Ensure correct behavior for rows ending in delimiter in...
  • #22848: BUG, SIMD: Fix the bitmask of the boolean comparison
  • #22857: BLD: Help raspian arm + clang 13 about __builtin_mul_overflow
  • #22858: API: Ensure a full mask is returned for masked_invalid
  • #22866: BUG: Polynomials now copy properly (#22669)
  • #22867: BUG, SIMD: Fix memory overlap in ufunc comparison loops
  • #22868: BUG: Fortify string casts against floating point warnings
  • #22875: TST: Ignore nan-warnings in randomized out tests
  • #22883: MAINT: restore npymath implementations needed for freebsd
  • #22884: BUG: Fix integer overflow in in1d for mixed integer dtypes #22877
  • #22887: BUG: Use whole file for encoding checks with charset_normalizer.

Checksums

MD5

9e543db90493d6a00939bd54c2012085  numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl
4ebd7af622bf617b4876087e500d7586  numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl
0c0a3012b438bb455a6c2fadfb1be76a  numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0bddb527345449df624d3cb9aa0e1b75  numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b246beb773689d97307f7b4c2970f061  numpy-1.24.1-cp310-cp310-win32.whl
1f3823999fce821a28dee10ac6fdd721  numpy-1.24.1-cp310-cp310-win_amd64.whl
8eedcacd6b096a568e4cb393d43b3ae5  numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl
50bddb05acd54b4396100a70522496dd  numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl
2a76bd9da8a78b44eb816bd70fa3aee3  numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9e86658a414272f9749bde39344f9b76  numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
915dfb89054e1631574a22a9b53a2b25  numpy-1.24.1-cp311-cp311-win32.whl
ab7caa2c6c20e1fab977e1a94dede976  numpy-1.24.1-cp311-cp311-win_amd64.whl
8246de961f813f5aad89bca3d12f81e7  numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl
58366b1a559baa0547ce976e416ed76d  numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl
a96f29bf106a64f82b9ba412635727d1  numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4c32a43bdb85121614ab3e99929e33c7  numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
09b20949ed21683ad7c9cbdf9ebb2439  numpy-1.24.1-cp38-cp38-win32.whl
9e9f1577f874286a8bdff8dc5551eb9f  numpy-1.24.1-cp38-cp38-win_amd64.whl
4383c1137f0287df67c364fbdba2bc72  numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl
987f22c49b2be084b5d72f88f347d31e  numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl
848ad020bba075ed8f19072c64dcd153  numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
864b159e644848bc25f881907dbcf062  numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
db339ec0b2693cac2d7cf9ca75c334b1  numpy-1.24.1-cp39-cp39-win32.whl
fec91d4c85066ad8a93816d71b627701  numpy-1.24.1-cp39-cp39-win_amd64.whl
619af9cd4f33b668822ae2350f446a15  numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
46f19b4b147f8836c2bd34262fabfffa  numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e85b245c57a10891b3025579bf0cf298  numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl
dd3aaeeada8e95cc2edf9a3a4aa8b5af  numpy-1.24.1.tar.gz

SHA256

179a7ef0889ab769cc03573b6217f54c8bd8e16cef80aad369e1e8185f994cd7  numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl
b09804ff570b907da323b3d762e74432fb07955701b17b08ff1b5ebaa8cfe6a9  numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl
f1b739841821968798947d3afcefd386fa56da0caf97722a5de53e07c4ccedc7  numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0e3463e6ac25313462e04aea3fb8a0a30fb906d5d300f58b3bc2c23da6a15398  numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b31da69ed0c18be8b77bfce48d234e55d040793cebb25398e2a7d84199fbc7e2  numpy-1.24.1-cp310-cp310-win32.whl
b07b40f5fb4fa034120a5796288f24c1fe0e0580bbfff99897ba6267af42def2  numpy-1.24.1-cp310-cp310-win_amd64.whl
7094891dcf79ccc6bc2a1f30428fa5edb1e6fb955411ffff3401fb4ea93780a8  numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl
28e418681372520c992805bb723e29d69d6b7aa411065f48216d8329d02ba032  numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl
e274f0f6c7efd0d577744f52032fdd24344f11c5ae668fe8d01aac0422611df1  numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0044f7d944ee882400890f9ae955220d29b33d809a038923d88e4e01d652acd9  numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
442feb5e5bada8408e8fcd43f3360b78683ff12a4444670a7d9e9824c1817d36  numpy-1.24.1-cp311-cp311-win32.whl
de92efa737875329b052982e37bd4371d52cabf469f83e7b8be9bb7752d67e51  numpy-1.24.1-cp311-cp311-win_amd64.whl
b162ac10ca38850510caf8ea33f89edcb7b0bb0dfa5592d59909419986b72407  numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl
26089487086f2648944f17adaa1a97ca6aee57f513ba5f1c0b7ebdabbe2b9954  numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl
caf65a396c0d1f9809596be2e444e3bd4190d86d5c1ce21f5fc4be60a3bc5b36  numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b0677a52f5d896e84414761531947c7a330d1adc07c3a4372262f25d84af7bf7  numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
dae46bed2cb79a58d6496ff6d8da1e3b95ba09afeca2e277628171ca99b99db1  numpy-1.24.1-cp38-cp38-win32.whl
6ec0c021cd9fe732e5bab6401adea5a409214ca5592cd92a114f7067febcba0c  numpy-1.24.1-cp38-cp38-win_amd64.whl
28bc9750ae1f75264ee0f10561709b1462d450a4808cd97c013046073ae64ab6  numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl
84e789a085aabef2f36c0515f45e459f02f570c4b4c4c108ac1179c34d475ed7  numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl
8e669fbdcdd1e945691079c2cae335f3e3a56554e06bbd45d7609a6cf568c700  numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ef85cf1f693c88c1fd229ccd1055570cb41cdf4875873b7728b6301f12cd05bf  numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
87a118968fba001b248aac90e502c0b13606721b1343cdaddbc6e552e8dfb56f  numpy-1.24.1-cp39-cp39-win32.whl
ddc7ab52b322eb1e40521eb422c4e0a20716c271a306860979d450decbb51b8e  numpy-1.24.1-cp39-cp39-win_amd64.whl
ed5fb71d79e771ec930566fae9c02626b939e37271ec285e9efaf1b5d4370e7d  numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
ad2925567f43643f51255220424c23d204024ed428afc5aad0f86f3ffc080086  numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cfa1161c6ac8f92dea03d625c2d0c05e084668f4a06568b77a25a89111621566  numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl
2386da9a471cc00a1f47845e27d916d5ec5346ae9696e01a8a34760858fe9dd2  numpy-1.24.1.tar.gz

v1.24.0

1 year ago

NumPy 1.24 Release Notes

The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There are also a large number of new and expired deprecations due to changes in promotion and cleanups. This might be called a deprecation release. Highlights are

  • Many new deprecations, check them out.
  • Many expired deprecations,
  • New F2PY features and fixes.
  • New "dtype" and "casting" keywords for stacking functions.

See below for the details,

This release supports Python versions 3.8-3.11.

Deprecations

Deprecate fastCopyAndTranspose and PyArray_CopyAndTranspose

The numpy.fastCopyAndTranspose function has been deprecated. Use the corresponding copy and transpose methods directly:

arr.T.copy()

The underlying C function PyArray_CopyAndTranspose has also been deprecated from the NumPy C-API.

(gh-22313)

Conversion of out-of-bound Python integers

Attempting a conversion from a Python integer to a NumPy value will now always check whether the result can be represented by NumPy. This means the following examples will fail in the future and give a DeprecationWarning now:

np.uint8(-1)
np.array([3000], dtype=np.int8)

Many of these did succeed before. Such code was mainly useful for unsigned integers with negative values such as np.uint8(-1) giving np.iinfo(np.uint8).max.

Note that conversion between NumPy integers is unaffected, so that np.array(-1).astype(np.uint8) continues to work and use C integer overflow logic. For negative values, it will also work to view the array: np.array(-1, dtype=np.int8).view(np.uint8). In some cases, using np.iinfo(np.uint8).max or val % 2**8 may also work well.

In rare cases input data may mix both negative values and very large unsigned values (i.e. -1 and 2**63). There it is unfortunately necessary to use % on the Python value or use signed or unsigned conversion depending on whether negative values are expected.

(gh-22385)

Deprecate msort

The numpy.msort function is deprecated. Use np.sort(a, axis=0) instead.

(gh-22456)

np.str0 and similar are now deprecated

The scalar type aliases ending in a 0 bit size: np.object0, np.str0, np.bytes0, np.void0, np.int0, np.uint0 as well as np.bool8 are now deprecated and will eventually be removed.

(gh-22607)

Expired deprecations

  • The normed keyword argument has been removed from [np.histogram]{.title-ref}, [np.histogram2d]{.title-ref}, and [np.histogramdd]{.title-ref}. Use density instead. If normed was passed by position, density is now used.

    (gh-21645)

  • Ragged array creation will now always raise a ValueError unless dtype=object is passed. This includes very deeply nested sequences.

    (gh-22004)

  • Support for Visual Studio 2015 and earlier has been removed.

  • Support for the Windows Interix POSIX interop layer has been removed.

    (gh-22139)

  • Support for Cygwin < 3.3 has been removed.

    (gh-22159)

  • The mini() method of np.ma.MaskedArray has been removed. Use either np.ma.MaskedArray.min() or np.ma.minimum.reduce().

  • The single-argument form of np.ma.minimum and np.ma.maximum has been removed. Use np.ma.minimum.reduce() or np.ma.maximum.reduce() instead.

    (gh-22228)

  • Passing dtype instances other than the canonical (mainly native byte-order) ones to dtype= or signature= in ufuncs will now raise a TypeError. We recommend passing the strings "int8" or scalar types np.int8 since the byte-order, datetime/timedelta unit, etc. are never enforced. (Initially deprecated in NumPy 1.21.)

    (gh-22540)

  • The dtype= argument to comparison ufuncs is now applied correctly. That means that only bool and object are valid values and dtype=object is enforced.

    (gh-22541)

  • The deprecation for the aliases np.object, np.bool, np.float, np.complex, np.str, and np.int is expired (introduces NumPy 1.20). Some of these will now give a FutureWarning in addition to raising an error since they will be mapped to the NumPy scalars in the future.

    (gh-22607)

Compatibility notes

array.fill(scalar) may behave slightly different

numpy.ndarray.fill may in some cases behave slightly different now due to the fact that the logic is aligned with item assignment:

arr = np.array([1])  # with any dtype/value
arr.fill(scalar)
# is now identical to:
arr[0] = scalar

Previously casting may have produced slightly different answers when using values that could not be represented in the target dtype or when the target had object dtype.

(gh-20924)

Subarray to object cast now copies

Casting a dtype that includes a subarray to an object will now ensure a copy of the subarray. Previously an unsafe view was returned:

arr = np.ones(3, dtype=[("f", "i", 3)])
subarray_fields = arr.astype(object)[0]
subarray = subarray_fields[0]  # "f" field

np.may_share_memory(subarray, arr)

Is now always false. While previously it was true for the specific cast.

(gh-21925)

Returned arrays respect uniqueness of dtype kwarg objects

When the dtype keyword argument is used with :pynp.array(){.interpreted-text role="func"} or :pyasarray(){.interpreted-text role="func"}, the dtype of the returned array now always exactly matches the dtype provided by the caller.

In some cases this change means that a view rather than the input array is returned. The following is an example for this on 64bit Linux where long and longlong are the same precision but different dtypes:

>>> arr = np.array([1, 2, 3], dtype="long")
>>> new_dtype = np.dtype("longlong")
>>> new = np.asarray(arr, dtype=new_dtype)
>>> new.dtype is new_dtype
True
>>> new is arr
False

Before the change, the dtype did not match because new is arr was True.

(gh-21995)

DLPack export raises BufferError

When an array buffer cannot be exported via DLPack a BufferError is now always raised where previously TypeError or RuntimeError was raised. This allows falling back to the buffer protocol or __array_interface__ when DLPack was tried first.

(gh-22542)

NumPy builds are no longer tested on GCC-6

Ubuntu 18.04 is deprecated for GitHub actions and GCC-6 is not available on Ubuntu 20.04, so builds using that compiler are no longer tested. We still test builds using GCC-7 and GCC-8.

(gh-22598)

New Features

New attribute symbol added to polynomial classes

The polynomial classes in the numpy.polynomial package have a new symbol attribute which is used to represent the indeterminate of the polynomial. This can be used to change the value of the variable when printing:

>>> P_y = np.polynomial.Polynomial([1, 0, -1], symbol="y")
>>> print(P_y)
1.0 + 0.0·y¹ - 1.0·y²

Note that the polynomial classes only support 1D polynomials, so operations that involve polynomials with different symbols are disallowed when the result would be multivariate:

>>> P = np.polynomial.Polynomial([1, -1])  # default symbol is "x"
>>> P_z = np.polynomial.Polynomial([1, 1], symbol="z")
>>> P * P_z
Traceback (most recent call last)
   ...
ValueError: Polynomial symbols differ

The symbol can be any valid Python identifier. The default is symbol=x, consistent with existing behavior.

(gh-16154)

F2PY support for Fortran character strings

F2PY now supports wrapping Fortran functions with:

  • character (e.g. character x)
  • character array (e.g. character, dimension(n) :: x)
  • character string (e.g. character(len=10) x)
  • and character string array (e.g. character(len=10), dimension(n, m) :: x)

arguments, including passing Python unicode strings as Fortran character string arguments.

(gh-19388)

New function np.show_runtime

A new function numpy.show_runtime has been added to display the runtime information of the machine in addition to numpy.show_config which displays the build-related information.

(gh-21468)

strict option for testing.assert_array_equal

The strict option is now available for testing.assert_array_equal. Setting strict=True will disable the broadcasting behaviour for scalars and ensure that input arrays have the same data type.

(gh-21595)

New parameter equal_nan added to np.unique

np.unique was changed in 1.21 to treat all NaN values as equal and return a single NaN. Setting equal_nan=False will restore pre-1.21 behavior to treat NaNs as unique. Defaults to True.

(gh-21623)

casting and dtype keyword arguments for numpy.stack

The casting and dtype keyword arguments are now available for numpy.stack. To use them, write np.stack(..., dtype=None, casting='same_kind').

casting and dtype keyword arguments for numpy.vstack

The casting and dtype keyword arguments are now available for numpy.vstack. To use them, write np.vstack(..., dtype=None, casting='same_kind').

casting and dtype keyword arguments for numpy.hstack

The casting and dtype keyword arguments are now available for numpy.hstack. To use them, write np.hstack(..., dtype=None, casting='same_kind').

(gh-21627)

The bit generator underlying the singleton RandomState can be changed

The singleton RandomState instance exposed in the numpy.random module is initialized at startup with the MT19937 bit generator. The new function set_bit_generator allows the default bit generator to be replaced with a user-provided bit generator. This function has been introduced to provide a method allowing seamless integration of a high-quality, modern bit generator in new code with existing code that makes use of the singleton-provided random variate generating functions. The companion function get_bit_generator returns the current bit generator being used by the singleton RandomState. This is provided to simplify restoring the original source of randomness if required.

The preferred method to generate reproducible random numbers is to use a modern bit generator in an instance of Generator. The function default_rng simplifies instantiation:

>>> rg = np.random.default_rng(3728973198)
>>> rg.random()

The same bit generator can then be shared with the singleton instance so that calling functions in the random module will use the same bit generator:

>>> orig_bit_gen = np.random.get_bit_generator()
>>> np.random.set_bit_generator(rg.bit_generator)
>>> np.random.normal()

The swap is permanent (until reversed) and so any call to functions in the random module will use the new bit generator. The original can be restored if required for code to run correctly:

>>> np.random.set_bit_generator(orig_bit_gen)

(gh-21976)

np.void now has a dtype argument

NumPy now allows constructing structured void scalars directly by passing the dtype argument to np.void.

(gh-22316)

Improvements

F2PY Improvements

  • The generated extension modules don't use the deprecated NumPy-C API anymore
  • Improved f2py generated exception messages
  • Numerous bug and flake8 warning fixes
  • various CPP macros that one can use within C-expressions of signature files are prefixed with f2py_. For example, one should use f2py_len(x) instead of len(x)
  • A new construct character(f2py_len=...) is introduced to support returning assumed length character strings (e.g. character(len=*)) from wrapper functions

A hook to support rewriting f2py internal data structures after reading all its input files is introduced. This is required, for instance, for BC of SciPy support where character arguments are treated as character strings arguments in C expressions.

(gh-19388)

IBM zSystems Vector Extension Facility (SIMD)

Added support for SIMD extensions of zSystem (z13, z14, z15), through the universal intrinsics interface. This support leads to performance improvements for all SIMD kernels implemented using the universal intrinsics, including the following operations: rint, floor, trunc, ceil, sqrt, absolute, square, reciprocal, tanh, sin, cos, equal, not_equal, greater, greater_equal, less, less_equal, maximum, minimum, fmax, fmin, argmax, argmin, add, subtract, multiply, divide.

(gh-20913)

NumPy now gives floating point errors in casts

In most cases, NumPy previously did not give floating point warnings or errors when these happened during casts. For examples, casts like:

np.array([2e300]).astype(np.float32)  # overflow for float32
np.array([np.inf]).astype(np.int64)

Should now generally give floating point warnings. These warnings should warn that floating point overflow occurred. For errors when converting floating point values to integers users should expect invalid value warnings.

Users can modify the behavior of these warnings using np.errstate.

Note that for float to int casts, the exact warnings that are given may be platform dependent. For example:

arr = np.full(100, value=1000, dtype=np.float64)
arr.astype(np.int8)

May give a result equivalent to (the intermediate cast means no warning is given):

arr.astype(np.int64).astype(np.int8)

May return an undefined result, with a warning set:

RuntimeWarning: invalid value encountered in cast

The precise behavior is subject to the C99 standard and its implementation in both software and hardware.

(gh-21437)

F2PY supports the value attribute

The Fortran standard requires that variables declared with the value attribute must be passed by value instead of reference. F2PY now supports this use pattern correctly. So integer, intent(in), value :: x in Fortran codes will have correct wrappers generated.

(gh-21807)

Added pickle support for third-party BitGenerators

The pickle format for bit generators was extended to allow each bit generator to supply its own constructor when during pickling. Previous versions of NumPy only supported unpickling Generator instances created with one of the core set of bit generators supplied with NumPy. Attempting to unpickle a Generator that used a third-party bit generators would fail since the constructor used during the unpickling was only aware of the bit generators included in NumPy.

(gh-22014)

arange() now explicitly fails with dtype=str

Previously, the np.arange(n, dtype=str) function worked for n=1 and n=2, but would raise a non-specific exception message for other values of n. Now, it raises a [TypeError]{.title-ref} informing that arange does not support string dtypes:

>>> np.arange(2, dtype=str)
Traceback (most recent call last)
   ...
TypeError: arange() not supported for inputs with DType <class 'numpy.dtype[str_]'>.

(gh-22055)

numpy.typing protocols are now runtime checkable

The protocols used in numpy.typing.ArrayLike and numpy.typing.DTypeLike are now properly marked as runtime checkable, making them easier to use for runtime type checkers.

(gh-22357)

Performance improvements and changes

Faster version of np.isin and np.in1d for integer arrays

np.in1d (used by np.isin) can now switch to a faster algorithm (up to >10x faster) when it is passed two integer arrays. This is often automatically used, but you can use kind="sort" or kind="table" to force the old or new method, respectively.

(gh-12065)

Faster comparison operators

The comparison functions (numpy.equal, numpy.not_equal, numpy.less, numpy.less_equal, numpy.greater and numpy.greater_equal) are now much faster as they are now vectorized with universal intrinsics. For a CPU with SIMD extension AVX512BW, the performance gain is up to 2.57x, 1.65x and 19.15x for integer, float and boolean data types, respectively (with N=50000).

(gh-21483)

Changes

Better reporting of integer division overflow

Integer division overflow of scalars and arrays used to provide a RuntimeWarning and the return value was undefined leading to crashes at rare occasions:

>>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1)
<stdin>:1: RuntimeWarning: divide by zero encountered in floor_divide
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)

Integer division overflow now returns the input dtype's minimum value and raise the following RuntimeWarning:

>>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1)
<stdin>:1: RuntimeWarning: overflow encountered in floor_divide
array([-2147483648, -2147483648, -2147483648, -2147483648, -2147483648,
       -2147483648, -2147483648, -2147483648, -2147483648, -2147483648],
      dtype=int32)

(gh-21506)

masked_invalid now modifies the mask in-place

When used with copy=False, numpy.ma.masked_invalid now modifies the input masked array in-place. This makes it behave identically to masked_where and better matches the documentation.

(gh-22046)

nditer/NpyIter allows all allocating all operands

The NumPy iterator available through np.nditer in Python and as NpyIter in C now supports allocating all arrays. The iterator shape defaults to () in this case. The operands dtype must be provided, since a "common dtype" cannot be inferred from the other inputs.

(gh-22457)

Checksums

MD5

d60311246bd71b177258ce06e2a4ec57  numpy-1.24.0-cp310-cp310-macosx_10_9_x86_64.whl
02022b335938af55cb83bbaebdbff8e1  numpy-1.24.0-cp310-cp310-macosx_11_0_arm64.whl
02b35d6612369fcc614c6223aaec0119  numpy-1.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7b8ad389a9619db3e1f8243fc0cfe63d  numpy-1.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6ff4acbb7b1258ccbd528c151eb0fe84  numpy-1.24.0-cp310-cp310-win32.whl
d194c96601222db97b0af54fce1cfb1d  numpy-1.24.0-cp310-cp310-win_amd64.whl
5fe4eb551a9312e37492da9f5bfb8545  numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl
a8e836a768f73e9f509b11c3873c7e09  numpy-1.24.0-cp311-cp311-macosx_11_0_arm64.whl
10404d6d1a5a9624f85018f61110b2be  numpy-1.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
cfdb0cb844f1db9be2cde998be54d65f  numpy-1.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
73bc66ad3ae8656ba18d64db98feb5e1  numpy-1.24.0-cp311-cp311-win32.whl
4bbc30a53009c48d364d4dc2c612af95  numpy-1.24.0-cp311-cp311-win_amd64.whl
94ce5f6a09605a9675a0d464b1ec6597  numpy-1.24.0-cp38-cp38-macosx_10_9_x86_64.whl
e5e42b69a209eda7e6895dda39ea8610  numpy-1.24.0-cp38-cp38-macosx_11_0_arm64.whl
36eb6143d1e2aac3c618275edf636983  numpy-1.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
712c3718e8b53ff04c626cc4c78492aa  numpy-1.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0a1a48a8e458bd4ce581169484c17e4f  numpy-1.24.0-cp38-cp38-win32.whl
c8ab7e4b919548663568a5b5a8b5eab4  numpy-1.24.0-cp38-cp38-win_amd64.whl
1783a5d769566111d93c474c79892c01  numpy-1.24.0-cp39-cp39-macosx_10_9_x86_64.whl
c9e77130674372c73f8209d58396624d  numpy-1.24.0-cp39-cp39-macosx_11_0_arm64.whl
14c0f2f52f20f13a81bba7df27f30145  numpy-1.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c106393b46fa0302dbac49b14a4dfed4  numpy-1.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c83e6d6946f32820f166c3f1ff010ab6  numpy-1.24.0-cp39-cp39-win32.whl
acd5a4737d1094d5f40afa584dbd6d79  numpy-1.24.0-cp39-cp39-win_amd64.whl
26e32f942c9fd62f64fd9bf6df95b5b1  numpy-1.24.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
4f027df0cc313ca626b106849999de13  numpy-1.24.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ac58db9a90d0bec95bc7850b9e462f34  numpy-1.24.0-pp38-pypy38_pp73-win_amd64.whl
1ca41c84ad9a116402a025d21e35bc64  numpy-1.24.0.tar.gz

SHA256

6e73a1f4f5b74a42abb55bc2b3d869f1b38cbc8776da5f8b66bf110284f7a437  numpy-1.24.0-cp310-cp310-macosx_10_9_x86_64.whl
9387c7d6d50e8f8c31e7bfc034241e9c6f4b3eb5db8d118d6487047b922f82af  numpy-1.24.0-cp310-cp310-macosx_11_0_arm64.whl
7ad6a024a32ee61d18f5b402cd02e9c0e22c0fb9dc23751991b3a16d209d972e  numpy-1.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
73cf2c5b5a07450f20a0c8e04d9955491970177dce8df8d6903bf253e53268e0  numpy-1.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cec79ff3984b2d1d103183fc4a3361f5b55bbb66cb395cbf5a920a4bb1fd588d  numpy-1.24.0-cp310-cp310-win32.whl
4f5e78b8b710cd7cd1a8145994cfffc6ddd5911669a437777d8cedfce6c83a98  numpy-1.24.0-cp310-cp310-win_amd64.whl
4445f472b246cad6514cc09fbb5ecb7aab09ca2acc3c16f29f8dca6c468af501  numpy-1.24.0-cp311-cp311-macosx_10_9_x86_64.whl
ec3e5e8172a0a6a4f3c2e7423d4a8434c41349141b04744b11a90e017a95bad5  numpy-1.24.0-cp311-cp311-macosx_11_0_arm64.whl
f9168790149f917ad8e3cf5047b353fefef753bd50b07c547da0bdf30bc15d91  numpy-1.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ada6c1e9608ceadaf7020e1deea508b73ace85560a16f51bef26aecb93626a72  numpy-1.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f3c4a9a9f92734a4728ddbd331e0124eabbc968a0359a506e8e74a9b0d2d419b  numpy-1.24.0-cp311-cp311-win32.whl
90075ef2c6ac6397d0035bcd8b298b26e481a7035f7a3f382c047eb9c3414db0  numpy-1.24.0-cp311-cp311-win_amd64.whl
0885d9a7666cafe5f9876c57bfee34226e2b2847bfb94c9505e18d81011e5401  numpy-1.24.0-cp38-cp38-macosx_10_9_x86_64.whl
e63d2157f9fc98cc178870db83b0e0c85acdadd598b134b00ebec9e0db57a01f  numpy-1.24.0-cp38-cp38-macosx_11_0_arm64.whl
cf8960f72997e56781eb1c2ea256a70124f92a543b384f89e5fb3503a308b1d3  numpy-1.24.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2f8e0df2ecc1928ef7256f18e309c9d6229b08b5be859163f5caa59c93d53646  numpy-1.24.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fe44e925c68fb5e8db1334bf30ac1a1b6b963b932a19cf41d2e899cf02f36aab  numpy-1.24.0-cp38-cp38-win32.whl
d7f223554aba7280e6057727333ed357b71b7da7422d02ff5e91b857888c25d1  numpy-1.24.0-cp38-cp38-win_amd64.whl
ab11f6a7602cf8ea4c093e091938207de3068c5693a0520168ecf4395750f7ea  numpy-1.24.0-cp39-cp39-macosx_10_9_x86_64.whl
12bba5561d8118981f2f1ff069ecae200c05d7b6c78a5cdac0911f74bc71cbd1  numpy-1.24.0-cp39-cp39-macosx_11_0_arm64.whl
9af91f794d2d3007d91d749ebc955302889261db514eb24caef30e03e8ec1e41  numpy-1.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8b1ddfac6a82d4f3c8e99436c90b9c2c68c0bb14658d1684cdd00f05fab241f5  numpy-1.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ac4fe68f1a5a18136acebd4eff91aab8bed00d1ef2fdb34b5d9192297ffbbdfc  numpy-1.24.0-cp39-cp39-win32.whl
667b5b1f6a352419e340f6475ef9930348ae5cb7fca15f2cc3afcb530823715e  numpy-1.24.0-cp39-cp39-win_amd64.whl
4d01f7832fa319a36fd75ba10ea4027c9338ede875792f7bf617f4b45056fc3a  numpy-1.24.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
dbb0490f0a880700a6cc4d000384baf19c1f4df59fff158d9482d4dbbca2b239  numpy-1.24.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0104d8adaa3a4cc60c2777cab5196593bf8a7f416eda133be1f3803dd0838886  numpy-1.24.0-pp38-pypy38_pp73-win_amd64.whl
c4ab7c9711fe6b235e86487ca74c1b092a6dd59a3cb45b63241ea0a148501853  numpy-1.24.0.tar.gz

v1.24.0rc2

1 year ago

NumPy 1.24 Release Notes

The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There are also a large number of new and expired deprecations due to changes in promotion and cleanups. This might be called a deprecation release. Highlights are

  • Many new deprecations, check them out.
  • Many expired deprecations,
  • New F2PY features and fixes.
  • New "dtype" and "casting" keywords for stacking functions.

See below for the details,

Deprecations

Deprecate fastCopyAndTranspose and PyArray_CopyAndTranspose

The numpy.fastCopyAndTranspose function has been deprecated. Use the corresponding copy and transpose methods directly:

arr.T.copy()

The underlying C function PyArray_CopyAndTranspose has also been deprecated from the NumPy C-API.

(gh-22313)

Conversion of out-of-bound Python integers

Attempting a conversion from a Python integer to a NumPy value will now always check whether the result can be represented by NumPy. This means the following examples will fail in the future and give a DeprecationWarning now:

np.uint8(-1)
np.array([3000], dtype=np.int8)

Many of these did succeed before. Such code was mainly useful for unsigned integers with negative values such as np.uint8(-1) giving np.iinfo(np.uint8).max.

Note that conversion between NumPy integers is unaffected, so that np.array(-1).astype(np.uint8) continues to work and use C integer overflow logic.

(gh-22393)

Deprecate msort

The numpy.msort function is deprecated. Use np.sort(a, axis=0) instead.

(gh-22456)

np.str0 and similar are now deprecated

The scalar type aliases ending in a 0 bit size: np.object0, np.str0, np.bytes0, np.void0, np.int0, np.uint0 as well as np.bool8 are now deprecated and will eventually be removed.

(gh-22607)

Expired deprecations

  • The normed keyword argument has been removed from [np.histogram]{.title-ref}, [np.histogram2d]{.title-ref}, and [np.histogramdd]{.title-ref}. Use density instead. If normed was passed by position, density is now used.

    (gh-21645)

  • Ragged array creation will now always raise a ValueError unless dtype=object is passed. This includes very deeply nested sequences.

    (gh-22004)

  • Support for Visual Studio 2015 and earlier has been removed.

  • Support for the Windows Interix POSIX interop layer has been removed.

    (gh-22139)

  • Support for cygwin < 3.3 has been removed.

    (gh-22159)

  • The mini() method of np.ma.MaskedArray has been removed. Use either np.ma.MaskedArray.min() or np.ma.minimum.reduce().

  • The single-argument form of np.ma.minimum and np.ma.maximum has been removed. Use np.ma.minimum.reduce() or np.ma.maximum.reduce() instead.

    (gh-22228)

  • Passing dtype instances other than the canonical (mainly native byte-order) ones to dtype= or signature= in ufuncs will now raise a TypeError. We recommend passing the strings "int8" or scalar types np.int8 since the byte-order, datetime/timedelta unit, etc. are never enforced. (Initially deprecated in NumPy 1.21.)

    (gh-22540)

  • The dtype= argument to comparison ufuncs is now applied correctly. That means that only bool and object are valid values and dtype=object is enforced.

    (gh-22541)

  • The deprecation for the aliases np.object, np.bool, np.float, np.complex, np.str, and np.int is expired (introduces NumPy 1.20). Some of these will now give a FutureWarning in addition to raising an error since they will be mapped to the NumPy scalars in the future.

    (gh-22607)

Compatibility notes

array.fill(scalar) may behave slightly different

numpy.ndarray.fill may in some cases behave slightly different now due to the fact that the logic is aligned with item assignment:

arr = np.array([1])  # with any dtype/value
arr.fill(scalar)
# is now identical to:
arr[0] = scalar

Previously casting may have produced slightly different answers when using values that could not be represented in the target dtype or when the target had object dtype.

(gh-20924)

Subarray to object cast now copies

Casting a dtype that includes a subarray to an object will now ensure a copy of the subarray. Previously an unsafe view was returned:

arr = np.ones(3, dtype=[("f", "i", 3)])
subarray_fields = arr.astype(object)[0]
subarray = subarray_fields[0]  # "f" field

np.may_share_memory(subarray, arr)

Is now always false. While previously it was true for the specific cast.

(gh-21925)

Returned arrays respect uniqueness of dtype kwarg objects

When the dtype keyword argument is used with :pynp.array(){.interpreted-text role="func"} or :pyasarray(){.interpreted-text role="func"}, the dtype of the returned array now always exactly matches the dtype provided by the caller.

In some cases this change means that a view rather than the input array is returned. The following is an example for this on 64bit Linux where long and longlong are the same precision but different dtypes:

>>> arr = np.array([1, 2, 3], dtype="long")
>>> new_dtype = np.dtype("longlong")
>>> new = np.asarray(arr, dtype=new_dtype)
>>> new.dtype is new_dtype
True
>>> new is arr
False

Before the change, the dtype did not match because new is arr was True.

(gh-21995)

DLPack export raises BufferError

When an array buffer cannot be exported via DLPack a BufferError is now always raised where previously TypeError or RuntimeError was raised. This allows falling back to the buffer protocol or __array_interface__ when DLPack was tried first.

(gh-22542)

NumPy builds are no longer tested on GCC-6

Ubuntu 18.04 is deprecated for GitHub actions and GCC-6 is not available on Ubuntu 20.04, so builds using that compiler are no longer tested. We still test builds using GCC-7 and GCC-8.

(gh-22598)

New Features

New attribute symbol added to polynomial classes

The polynomial classes in the numpy.polynomial package have a new symbol attribute which is used to represent the indeterminate of the polynomial. This can be used to change the value of the variable when printing:

>>> P_y = np.polynomial.Polynomial([1, 0, -1], symbol="y")
>>> print(P_y)
1.0 + 0.0·y¹ - 1.0·y²

Note that the polynomial classes only support 1D polynomials, so operations that involve polynomials with different symbols are disallowed when the result would be multivariate:

>>> P = np.polynomial.Polynomial([1, -1])  # default symbol is "x"
>>> P_z = np.polynomial.Polynomial([1, 1], symbol="z")
>>> P * P_z
Traceback (most recent call last)
   ...
ValueError: Polynomial symbols differ

The symbol can be any valid Python identifier. The default is symbol=x, consistent with existing behavior.

(gh-16154)

F2PY support for Fortran character strings

F2PY now supports wrapping Fortran functions with:

  • character (e.g. character x)
  • character array (e.g. character, dimension(n) :: x)
  • character string (e.g. character(len=10) x)
  • and character string array (e.g. character(len=10), dimension(n, m) :: x)

arguments, including passing Python unicode strings as Fortran character string arguments.

(gh-19388)

New function np.show_runtime

A new function numpy.show_runtime has been added to display the runtime information of the machine in addition to numpy.show_config which displays the build-related information.

(gh-21468)

strict option for testing.assert_array_equal

The strict option is now available for testing.assert_array_equal. Setting strict=True will disable the broadcasting behaviour for scalars and ensure that input arrays have the same data type.

(gh-21595)

New parameter equal_nan added to np.unique

np.unique was changed in 1.21 to treat all NaN values as equal and return a single NaN. Setting equal_nan=False will restore pre-1.21 behavior to treat NaNs as unique. Defaults to True.

(gh-21623)

casting and dtype keyword arguments for numpy.stack

The casting and dtype keyword arguments are now available for numpy.stack. To use them, write np.stack(..., dtype=None, casting='same_kind').

casting and dtype keyword arguments for numpy.vstack

The casting and dtype keyword arguments are now available for numpy.vstack. To use them, write np.vstack(..., dtype=None, casting='same_kind').

casting and dtype keyword arguments for numpy.hstack

The casting and dtype keyword arguments are now available for numpy.hstack. To use them, write np.hstack(..., dtype=None, casting='same_kind').

(gh-21627)

The bit generator underlying the singleton RandomState can be changed

The singleton RandomState instance exposed in the numpy.random module is initialized at startup with the MT19937 bit generator. The new function set_bit_generator allows the default bit generator to be replaced with a user-provided bit generator. This function has been introduced to provide a method allowing seamless integration of a high-quality, modern bit generator in new code with existing code that makes use of the singleton-provided random variate generating functions. The companion function get_bit_generator returns the current bit generator being used by the singleton RandomState. This is provided to simplify restoring the original source of randomness if required.

The preferred method to generate reproducible random numbers is to use a modern bit generator in an instance of Generator. The function default_rng simplifies instantiation:

>>> rg = np.random.default_rng(3728973198)
>>> rg.random()

The same bit generator can then be shared with the singleton instance so that calling functions in the random module will use the same bit generator:

>>> orig_bit_gen = np.random.get_bit_generator()
>>> np.random.set_bit_generator(rg.bit_generator)
>>> np.random.normal()

The swap is permanent (until reversed) and so any call to functions in the random module will use the new bit generator. The original can be restored if required for code to run correctly:

>>> np.random.set_bit_generator(orig_bit_gen)

(gh-21976)

np.void now has a dtype argument

NumPy now allows constructing structured void scalars directly by passing the dtype argument to np.void.

(gh-22316)

Improvements

F2PY Improvements

  • The generated extension modules don't use the deprecated NumPy-C API anymore
  • Improved f2py generated exception messages
  • Numerous bug and flake8 warning fixes
  • various CPP macros that one can use within C-expressions of signature files are prefixed with f2py_. For example, one should use f2py_len(x) instead of len(x)
  • A new construct character(f2py_len=...) is introduced to support returning assumed length character strings (e.g. character(len=*)) from wrapper functions

A hook to support rewriting f2py internal data structures after reading all its input files is introduced. This is required, for instance, for BC of SciPy support where character arguments are treated as character strings arguments in C expressions.

(gh-19388)

IBM zSystems Vector Extension Facility (SIMD)

Added support for SIMD extensions of zSystem (z13, z14, z15), through the universal intrinsics interface. This support leads to performance improvements for all SIMD kernels implemented using the universal intrinsics, including the following operations: rint, floor, trunc, ceil, sqrt, absolute, square, reciprocal, tanh, sin, cos, equal, not_equal, greater, greater_equal, less, less_equal, maximum, minimum, fmax, fmin, argmax, argmin, add, subtract, multiply, divide.

(gh-20913)

NumPy now gives floating point errors in casts

In most cases, NumPy previously did not give floating point warnings or errors when these happened during casts. For examples, casts like:

np.array([2e300]).astype(np.float32)  # overflow for float32
np.array([np.inf]).astype(np.int64)

Should now generally give floating point warnings. These warnings should warn that floating point overflow occurred. For errors when converting floating point values to integers users should expect invalid value warnings.

Users can modify the behavior of these warnings using np.errstate.

Note that for float to int casts, the exact warnings that are given may be platform dependent. For example:

arr = np.full(100, value=1000, dtype=np.float64)
arr.astype(np.int8)

May give a result equivalent to (the intermediate cast means no warning is given):

arr.astype(np.int64).astype(np.int8)

May return an undefined result, with a warning set:

RuntimeWarning: invalid value encountered in cast

The precise behavior is subject to the C99 standard and its implementation in both software and hardware.

(gh-21437)

F2PY supports the value attribute

The Fortran standard requires that variables declared with the value attribute must be passed by value instead of reference. F2PY now supports this use pattern correctly. So integer, intent(in), value :: x in Fortran codes will have correct wrappers generated.

(gh-21807)

Added pickle support for third-party BitGenerators

The pickle format for bit generators was extended to allow each bit generator to supply its own constructor when during pickling. Previous versions of NumPy only supported unpickling Generator instances created with one of the core set of bit generators supplied with NumPy. Attempting to unpickle a Generator that used a third-party bit generators would fail since the constructor used during the unpickling was only aware of the bit generators included in NumPy.

(gh-22014)

arange() now explicitly fails with dtype=str

Previously, the np.arange(n, dtype=str) function worked for n=1 and n=2, but would raise a non-specific exception message for other values of n. Now, it raises a [TypeError]{.title-ref} informing that arange does not support string dtypes:

>>> np.arange(2, dtype=str)
Traceback (most recent call last)
   ...
TypeError: arange() not supported for inputs with DType <class 'numpy.dtype[str_]'>.

(gh-22055)

numpy.typing protocols are now runtime checkable

The protocols used in numpy.typing.ArrayLike and numpy.typing.DTypeLike are now properly marked as runtime checkable, making them easier to use for runtime type checkers.

(gh-22357)

Performance improvements and changes

Faster version of np.isin and np.in1d for integer arrays

np.in1d (used by np.isin) can now switch to a faster algorithm (up to >10x faster) when it is passed two integer arrays. This is often automatically used, but you can use kind="sort" or kind="table" to force the old or new method, respectively.

(gh-12065)

Faster comparison operators

The comparison functions (numpy.equal, numpy.not_equal, numpy.less, numpy.less_equal, numpy.greater and numpy.greater_equal) are now much faster as they are now vectorized with universal intrinsics. For a CPU with SIMD extension AVX512BW, the performance gain is up to 2.57x, 1.65x and 19.15x for integer, float and boolean data types, respectively (with N=50000).

(gh-21483)

Changes

Better reporting of integer division overflow

Integer division overflow of scalars and arrays used to provide a RuntimeWarning and the return value was undefined leading to crashes at rare occasions:

>>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1)
<stdin>:1: RuntimeWarning: divide by zero encountered in floor_divide
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)

Integer division overflow now returns the input dtype's minimum value and raise the following RuntimeWarning:

>>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1)
<stdin>:1: RuntimeWarning: overflow encountered in floor_divide
array([-2147483648, -2147483648, -2147483648, -2147483648, -2147483648,
       -2147483648, -2147483648, -2147483648, -2147483648, -2147483648],
      dtype=int32)

(gh-21506)

masked_invalid now modifies the mask in-place

When used with copy=False, numpy.ma.masked_invalid now modifies the input masked array in-place. This makes it behave identically to masked_where and better matches the documentation.

(gh-22046)

nditer/NpyIter allows all allocating all operands

The NumPy iterator available through np.nditer in Python and as NpyIter in C now supports allocating all arrays. The iterator shape defaults to () in this case. The operands dtype must be provided, since a "common dtype" cannot be inferred from the other inputs.

(gh-22457)

Checksums

MD5

0f45cfebcb56027a7c9fc14577082789  numpy-1.24.0rc2-cp310-cp310-macosx_10_9_x86_64.whl
c895f8af0f548ba2bbb948119a151cf7  numpy-1.24.0rc2-cp310-cp310-macosx_11_0_arm64.whl
4552d324786e3c05732135c59a73fbc6  numpy-1.24.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
99e4634eb1474e8c443cd6cee5dbc39e  numpy-1.24.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f0304cb2aa708dfe1e0aa16cdfa3046d  numpy-1.24.0rc2-cp310-cp310-win32.whl
501424e62329ac7996be850a2fc58963  numpy-1.24.0rc2-cp310-cp310-win_amd64.whl
2b6a65ea122eaffb2f3b5643b1ce1ec4  numpy-1.24.0rc2-cp311-cp311-macosx_10_9_x86_64.whl
865bbc90494b6e9e845ac1eb08ba0377  numpy-1.24.0rc2-cp311-cp311-macosx_11_0_arm64.whl
faa4f8e5050cb7c4319d2c2df23eca05  numpy-1.24.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
509fbe04ec7941baaedc6502d003b864  numpy-1.24.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2eb1e8cd4c53ee4046fb0cd858daef80  numpy-1.24.0rc2-cp311-cp311-win32.whl
f5bd22dee1273898598f373b72e40f84  numpy-1.24.0rc2-cp311-cp311-win_amd64.whl
6a7b14b0fcbb33a8a415e27afc856544  numpy-1.24.0rc2-cp38-cp38-macosx_10_9_x86_64.whl
8a26467d235710d2db2bc68ef639318f  numpy-1.24.0rc2-cp38-cp38-macosx_11_0_arm64.whl
e6f08e32041c4e3ca64b8714f2c1f1c8  numpy-1.24.0rc2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7112b8e3f9a46953b0a1e9a670008ed4  numpy-1.24.0rc2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9a7155f0a4a39e17bd70c17331c7e765  numpy-1.24.0rc2-cp38-cp38-win32.whl
cb10d074bf1977d2257209f96465e639  numpy-1.24.0rc2-cp38-cp38-win_amd64.whl
0fa5a0f9dfbb817061bd3b438a0e0b19  numpy-1.24.0rc2-cp39-cp39-macosx_10_9_x86_64.whl
39bd8e522bf703f0be585a7b30861fd0  numpy-1.24.0rc2-cp39-cp39-macosx_11_0_arm64.whl
a8907c987c7b5f66891cf294dbba4347  numpy-1.24.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7a5f46715e8b93c7b86f275c7ae3f160  numpy-1.24.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
04daa21b43702b1bf5431731d16a59d6  numpy-1.24.0rc2-cp39-cp39-win32.whl
046ebc9bb672392443280192e8c71a6d  numpy-1.24.0rc2-cp39-cp39-win_amd64.whl
e44b5d937de603499ccf29d96e308cd7  numpy-1.24.0rc2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
6a0c0372e7d4db195dd8e889d70de00b  numpy-1.24.0rc2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
946e249ee0dab46c57b5b913ccfe80cd  numpy-1.24.0rc2-pp38-pypy38_pp73-win_amd64.whl
0974533ba76def71daa78cd0df753e1e  numpy-1.24.0rc2.tar.gz

SHA256

dce26877ad77c9722e35c9ca82e9272cb6d10aa0a4f95e633b13511dcf549b5f  numpy-1.24.0rc2-cp310-cp310-macosx_10_9_x86_64.whl
0983fb5b475406cd6aa2f4f364768fb388e1211fd94fb496ad49e214d5c79792  numpy-1.24.0rc2-cp310-cp310-macosx_11_0_arm64.whl
df9a9c28ad95c87b4047e1acd45715eb430fb5f6df39556279b3f36ce75c697b  numpy-1.24.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bdd44d3133c800792f2beda0e24f86b3ae06a8a31172395c650d13e4c05d1d5b  numpy-1.24.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ab18e29ad73ce560747de10ebe75f145be3026b7480e76d7a5314c2bef0fc831  numpy-1.24.0rc2-cp310-cp310-win32.whl
1651a59e5d8dbb09b84254e358aa2fe10431df5a92ddefb1ac20208c75bd2fa2  numpy-1.24.0rc2-cp310-cp310-win_amd64.whl
146d7e5ee04433ce8eb504d0dcffff524a5ba759bd1fb9c73189c3436b04d59c  numpy-1.24.0rc2-cp311-cp311-macosx_10_9_x86_64.whl
a68647adc9945eac88f4fce96195177c2a81577baa448c1c1bbd5751c550e8b5  numpy-1.24.0rc2-cp311-cp311-macosx_11_0_arm64.whl
50346a0d81444f420518c7d6996524d7e559cdfa2e41886381442f012593590e  numpy-1.24.0rc2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8bc069b085289f3b7a578519504962330fab91459a847195b914f69b9170b75c  numpy-1.24.0rc2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
07c0f3b174970054c613c33e90627fbafbc5d9115adf8829658b833278e7017c  numpy-1.24.0rc2-cp311-cp311-win32.whl
1d6198ee7eb45e5d9cc8a5c9102b734f0c5683c0e440ae7cfad90ad8cb9316d2  numpy-1.24.0rc2-cp311-cp311-win_amd64.whl
e948367a0b9aa68a081c4cf817751c6d0d589a37ce6bb40fea39a882b4858834  numpy-1.24.0rc2-cp38-cp38-macosx_10_9_x86_64.whl
e4909946cf43ff713f95780d483793d8fb23c1559686a8221e91f89e5ecceea0  numpy-1.24.0rc2-cp38-cp38-macosx_11_0_arm64.whl
0704c94f89bf8d5d4f5722b305a29cbb1ad91c7f3dcdcda61cb80d6e5443365b  numpy-1.24.0rc2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
748285bca9fb0f06a16034d4b9c6dce77997d2ccddf769aaeb4760fea4752ea2  numpy-1.24.0rc2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b6e807f59c1f71e74603a2a88b0b997d7f43e002f6e5f7f55649c6e07738f1ad  numpy-1.24.0rc2-cp38-cp38-win32.whl
0a5c85f625751b77a6f613db2de5f62514024a7ea6d3be534421746e094b2121  numpy-1.24.0rc2-cp38-cp38-win_amd64.whl
5db5f7a8f150614684c34449010c15b61df8d8e5fc0cd79ce30e82f493598599  numpy-1.24.0rc2-cp39-cp39-macosx_10_9_x86_64.whl
6f34b8f2996ebad781cd878276e03d247f0129640fb0ae76bb16addc4df822d1  numpy-1.24.0rc2-cp39-cp39-macosx_11_0_arm64.whl
e30689dd418f2db3d2d3039cb08011047d27708fdc24c592d56fa58aaeb01672  numpy-1.24.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
925d39290878d680eb8dd690f969faa0a4956b7bd77daf3573486eb39d8e5724  numpy-1.24.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a2495e48db12f546e4e3f9ea1f665390828098344bf63bca50309a68d713d302  numpy-1.24.0rc2-cp39-cp39-win32.whl
ea9ca0989fdd42d3320a94f540f317fb615be9ceab75a07078a84b9933582da5  numpy-1.24.0rc2-cp39-cp39-win_amd64.whl
c9ff51e627e7584eb7ee09f6fe494862e45f796e53b5ee7267d3d5633a79dac6  numpy-1.24.0rc2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
b4eca15593bec5ef3e2e05c157ff1be3990d04a862f49fd46b4e527ff390b778  numpy-1.24.0rc2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b45bdcde72ce02a92ae183ef211bcf7f04e15d5e3df6714866de66d8ec8cc822  numpy-1.24.0rc2-pp38-pypy38_pp73-win_amd64.whl
c943c61fa708a6225e199aff755b2c3f5a353a2bbb726e10334a05b8e1fc030b  numpy-1.24.0rc2.tar.gz

v1.24.0rc1

1 year ago

NumPy 1.24 Release Notes

The NumPy 1.24.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There are also a large number of new and expired deprecations due to changes in promotion and cleanups. This might be called a deprecation release. Highlights are

  • Many new deprecations, check them out.
  • Many expired deprecations,
  • New F2PY features and fixes.
  • New "dtype" and "casting" keywords for stacking functions.

See below for the details,

Deprecations

Deprecate fastCopyAndTranspose and PyArray_CopyAndTranspose

The numpy.fastCopyAndTranspose function has been deprecated. Use the corresponding copy and transpose methods directly:

arr.T.copy()

The underlying C function PyArray_CopyAndTranspose has also been deprecated from the NumPy C-API.

(gh-22313)

Conversion of out-of-bound Python integers

Attempting a conversion from a Python integer to a NumPy value will now always check whether the result can be represented by NumPy. This means the following examples will fail in the future and give a DeprecationWarning now:

np.uint8(-1)
np.array([3000], dtype=np.int8)

Many of these did succeed before. Such code was mainly useful for unsigned integers with negative values such as np.uint8(-1) giving np.iinfo(np.uint8).max.

Note that conversion between NumPy integers is unaffected, so that np.array(-1).astype(np.uint8) continues to work and use C integer overflow logic.

(gh-22393)

Deprecate msort

The numpy.msort function is deprecated. Use np.sort(a, axis=0) instead.

(gh-22456)

np.str0 and similar are now deprecated

The scalar type aliases ending in a 0 bit size: np.object0, np.str0, np.bytes0, np.void0, np.int0, np.uint0 as well as np.bool8 are now deprecated and will eventually be removed.

(gh-22607)

Expired deprecations

  • The normed keyword argument has been removed from [np.histogram]{.title-ref}, [np.histogram2d]{.title-ref}, and [np.histogramdd]{.title-ref}. Use density instead. If normed was passed by position, density is now used.

    (gh-21645)

  • Ragged array creation will now always raise a ValueError unless dtype=object is passed. This includes very deeply nested sequences.

    (gh-22004)

  • Support for Visual Studio 2015 and earlier has been removed.

  • Support for the Windows Interix POSIX interop layer has been removed.

    (gh-22139)

  • Support for cygwin < 3.3 has been removed.

    (gh-22159)

  • The mini() method of np.ma.MaskedArray has been removed. Use either np.ma.MaskedArray.min() or np.ma.minimum.reduce().

  • The single-argument form of np.ma.minimum and np.ma.maximum has been removed. Use np.ma.minimum.reduce() or np.ma.maximum.reduce() instead.

    (gh-22228)

  • Passing dtype instances other than the canonical (mainly native byte-order) ones to dtype= or signature= in ufuncs will now raise a TypeError. We recommend passing the strings "int8" or scalar types np.int8 since the byte-order, datetime/timedelta unit, etc. are never enforced. (Initially deprecated in NumPy 1.21.)

    (gh-22540)

  • The dtype= argument to comparison ufuncs is now applied correctly. That means that only bool and object are valid values and dtype=object is enforced.

    (gh-22541)

  • The deprecation for the aliases np.object, np.bool, np.float, np.complex, np.str, and np.int is expired (introduces NumPy 1.20). Some of these will now give a FutureWarning in addition to raising an error since they will be mapped to the NumPy scalars in the future.

    (gh-22607)

Compatibility notes

array.fill(scalar) may behave slightly different

numpy.ndarray.fill may in some cases behave slightly different now due to the fact that the logic is aligned with item assignment:

arr = np.array([1])  # with any dtype/value
arr.fill(scalar)
# is now identical to:
arr[0] = scalar

Previously casting may have produced slightly different answers when using values that could not be represented in the target dtype or when the target had object dtype.

(gh-20924)

Subarray to object cast now copies

Casting a dtype that includes a subarray to an object will now ensure a copy of the subarray. Previously an unsafe view was returned:

arr = np.ones(3, dtype=[("f", "i", 3)])
subarray_fields = arr.astype(object)[0]
subarray = subarray_fields[0]  # "f" field

np.may_share_memory(subarray, arr)

Is now always false. While previously it was true for the specific cast.

(gh-21925)

Returned arrays respect uniqueness of dtype kwarg objects

When the dtype keyword argument is used with :pynp.array(){.interpreted-text role="func"} or :pyasarray(){.interpreted-text role="func"}, the dtype of the returned array now always exactly matches the dtype provided by the caller.

In some cases this change means that a view rather than the input array is returned. The following is an example for this on 64bit Linux where long and longlong are the same precision but different dtypes:

>>> arr = np.array([1, 2, 3], dtype="long")
>>> new_dtype = np.dtype("longlong")
>>> new = np.asarray(arr, dtype=new_dtype)
>>> new.dtype is new_dtype
True
>>> new is arr
False

Before the change, the dtype did not match because new is arr was True.

(gh-21995)

DLPack export raises BufferError

When an array buffer cannot be exported via DLPack a BufferError is now always raised where previously TypeError or RuntimeError was raised. This allows falling back to the buffer protocol or __array_interface__ when DLPack was tried first.

(gh-22542)

NumPy builds are no longer tested on GCC-6

Ubuntu 18.04 is deprecated for GitHub actions and GCC-6 is not available on Ubuntu 20.04, so builds using that compiler are no longer tested. We still test builds using GCC-7 and GCC-8.

(gh-22598)

New Features

New attribute symbol added to polynomial classes

The polynomial classes in the numpy.polynomial package have a new symbol attribute which is used to represent the indeterminate of the polynomial. This can be used to change the value of the variable when printing:

>>> P_y = np.polynomial.Polynomial([1, 0, -1], symbol="y")
>>> print(P_y)
1.0 + 0.0·y¹ - 1.0·y²

Note that the polynomial classes only support 1D polynomials, so operations that involve polynomials with different symbols are disallowed when the result would be multivariate:

>>> P = np.polynomial.Polynomial([1, -1])  # default symbol is "x"
>>> P_z = np.polynomial.Polynomial([1, 1], symbol="z")
>>> P * P_z
Traceback (most recent call last)
   ...
ValueError: Polynomial symbols differ

The symbol can be any valid Python identifier. The default is symbol=x, consistent with existing behavior.

(gh-16154)

F2PY support for Fortran character strings

F2PY now supports wrapping Fortran functions with:

  • character (e.g. character x)
  • character array (e.g. character, dimension(n) :: x)
  • character string (e.g. character(len=10) x)
  • and character string array (e.g. character(len=10), dimension(n, m) :: x)

arguments, including passing Python unicode strings as Fortran character string arguments.

(gh-19388)

New function np.show_runtime

A new function numpy.show_runtime has been added to display the runtime information of the machine in addition to numpy.show_config which displays the build-related information.

(gh-21468)

strict option for testing.assert_array_equal

The strict option is now available for testing.assert_array_equal. Setting strict=True will disable the broadcasting behaviour for scalars and ensure that input arrays have the same data type.

(gh-21595)

New parameter equal_nan added to np.unique

np.unique was changed in 1.21 to treat all NaN values as equal and return a single NaN. Setting equal_nan=False will restore pre-1.21 behavior to treat NaNs as unique. Defaults to True.

(gh-21623)

casting and dtype keyword arguments for numpy.stack

The casting and dtype keyword arguments are now available for numpy.stack. To use them, write np.stack(..., dtype=None, casting='same_kind').

casting and dtype keyword arguments for numpy.vstack

The casting and dtype keyword arguments are now available for numpy.vstack. To use them, write np.vstack(..., dtype=None, casting='same_kind').

casting and dtype keyword arguments for numpy.hstack

The casting and dtype keyword arguments are now available for numpy.hstack. To use them, write np.hstack(..., dtype=None, casting='same_kind').

(gh-21627)

The bit generator underlying the singleton RandomState can be changed

The singleton RandomState instance exposed in the numpy.random module is initialized at startup with the MT19937 bit generator. The new function set_bit_generator allows the default bit generator to be replaced with a user-provided bit generator. This function has been introduced to provide a method allowing seamless integration of a high-quality, modern bit generator in new code with existing code that makes use of the singleton-provided random variate generating functions. The companion function get_bit_generator returns the current bit generator being used by the singleton RandomState. This is provided to simplify restoring the original source of randomness if required.

The preferred method to generate reproducible random numbers is to use a modern bit generator in an instance of Generator. The function default_rng simplifies instantiation:

>>> rg = np.random.default_rng(3728973198)
>>> rg.random()

The same bit generator can then be shared with the singleton instance so that calling functions in the random module will use the same bit generator:

>>> orig_bit_gen = np.random.get_bit_generator()
>>> np.random.set_bit_generator(rg.bit_generator)
>>> np.random.normal()

The swap is permanent (until reversed) and so any call to functions in the random module will use the new bit generator. The original can be restored if required for code to run correctly:

>>> np.random.set_bit_generator(orig_bit_gen)

(gh-21976)

np.void now has a dtype argument

NumPy now allows constructing structured void scalars directly by passing the dtype argument to np.void.

(gh-22316)

Improvements

F2PY Improvements

  • The generated extension modules don't use the deprecated NumPy-C API anymore
  • Improved f2py generated exception messages
  • Numerous bug and flake8 warning fixes
  • various CPP macros that one can use within C-expressions of signature files are prefixed with f2py_. For example, one should use f2py_len(x) instead of len(x)
  • A new construct character(f2py_len=...) is introduced to support returning assumed length character strings (e.g. character(len=*)) from wrapper functions

A hook to support rewriting f2py internal data structures after reading all its input files is introduced. This is required, for instance, for BC of SciPy support where character arguments are treated as character strings arguments in C expressions.

(gh-19388)

IBM zSystems Vector Extension Facility (SIMD)

Added support for SIMD extensions of zSystem (z13, z14, z15), through the universal intrinsics interface. This support leads to performance improvements for all SIMD kernels implemented using the universal intrinsics, including the following operations: rint, floor, trunc, ceil, sqrt, absolute, square, reciprocal, tanh, sin, cos, equal, not_equal, greater, greater_equal, less, less_equal, maximum, minimum, fmax, fmin, argmax, argmin, add, subtract, multiply, divide.

(gh-20913)

NumPy now gives floating point errors in casts

In most cases, NumPy previously did not give floating point warnings or errors when these happened during casts. For examples, casts like:

np.array([2e300]).astype(np.float32)  # overflow for float32
np.array([np.inf]).astype(np.int64)

Should now generally give floating point warnings. These warnings should warn that floating point overflow occurred. For errors when converting floating point values to integers users should expect invalid value warnings.

Users can modify the behavior of these warnings using np.errstate.

Note that for float to int casts, the exact warnings that are given may be platform dependent. For example:

arr = np.full(100, value=1000, dtype=np.float64)
arr.astype(np.int8)

May give a result equivalent to (the intermediate cast means no warning is given):

arr.astype(np.int64).astype(np.int8)

May return an undefined result, with a warning set:

RuntimeWarning: invalid value encountered in cast

The precise behavior is subject to the C99 standard and its implementation in both software and hardware.

(gh-21437)

F2PY supports the value attribute

The Fortran standard requires that variables declared with the value attribute must be passed by value instead of reference. F2PY now supports this use pattern correctly. So integer, intent(in), value :: x in Fortran codes will have correct wrappers generated.

(gh-21807)

Added pickle support for third-party BitGenerators

The pickle format for bit generators was extended to allow each bit generator to supply its own constructor when during pickling. Previous versions of NumPy only supported unpickling Generator instances created with one of the core set of bit generators supplied with NumPy. Attempting to unpickle a Generator that used a third-party bit generators would fail since the constructor used during the unpickling was only aware of the bit generators included in NumPy.

(gh-22014)

arange() now explicitly fails with dtype=str

Previously, the np.arange(n, dtype=str) function worked for n=1 and n=2, but would raise a non-specific exception message for other values of n. Now, it raises a [TypeError]{.title-ref} informing that arange does not support string dtypes:

>>> np.arange(2, dtype=str)
Traceback (most recent call last)
   ...
TypeError: arange() not supported for inputs with DType <class 'numpy.dtype[str_]'>.

(gh-22055)

numpy.typing protocols are now runtime checkable

The protocols used in numpy.typing.ArrayLike and numpy.typing.DTypeLike are now properly marked as runtime checkable, making them easier to use for runtime type checkers.

(gh-22357)

Performance improvements and changes

Faster version of np.isin and np.in1d for integer arrays

np.in1d (used by np.isin) can now switch to a faster algorithm (up to >10x faster) when it is passed two integer arrays. This is often automatically used, but you can use kind="sort" or kind="table" to force the old or new method, respectively.

(gh-12065)

Faster comparison operators

The comparison functions (numpy.equal, numpy.not_equal, numpy.less, numpy.less_equal, numpy.greater and numpy.greater_equal) are now much faster as they are now vectorized with universal intrinsics. For a CPU with SIMD extension AVX512BW, the performance gain is up to 2.57x, 1.65x and 19.15x for integer, float and boolean data types, respectively (with N=50000).

(gh-21483)

Changes

Better reporting of integer division overflow

Integer division overflow of scalars and arrays used to provide a RuntimeWarning and the return value was undefined leading to crashes at rare occasions:

>>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1)
<stdin>:1: RuntimeWarning: divide by zero encountered in floor_divide
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)

Integer division overflow now returns the input dtype's minimum value and raise the following RuntimeWarning:

>>> np.array([np.iinfo(np.int32).min]*10, dtype=np.int32) // np.int32(-1)
<stdin>:1: RuntimeWarning: overflow encountered in floor_divide
array([-2147483648, -2147483648, -2147483648, -2147483648, -2147483648,
       -2147483648, -2147483648, -2147483648, -2147483648, -2147483648],
      dtype=int32)

(gh-21506)

masked_invalid now modifies the mask in-place

When used with copy=False, numpy.ma.masked_invalid now modifies the input masked array in-place. This makes it behave identically to masked_where and better matches the documentation.

(gh-22046)

nditer/NpyIter allows all allocating all operands

The NumPy iterator available through np.nditer in Python and as NpyIter in C now supports allocating all arrays. The iterator shape defaults to () in this case. The operands dtype must be provided, since a "common dtype" cannot be inferred from the other inputs.

(gh-22457)

Checksums

MD5

1f08c901040ebe1324d16cfc71fe3cd2  numpy-1.24.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
d35a59a1ccf1542d690860ad85fbb0f0  numpy-1.24.0rc1-cp310-cp310-macosx_11_0_arm64.whl
c7db37964986d7b9756fd1aa077b7e72  numpy-1.24.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
72c2dad61fc86c4d87e23d0de975e0b6  numpy-1.24.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3c769f1089253266d7a522144696bde3  numpy-1.24.0rc1-cp310-cp310-win32.whl
96226a2045063b9caff40fe2a2098e72  numpy-1.24.0rc1-cp310-cp310-win_amd64.whl
b20897446f52e7fcde80e12c7cc1dc1e  numpy-1.24.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
9cafe21759e90c705533d1f3201d35aa  numpy-1.24.0rc1-cp311-cp311-macosx_11_0_arm64.whl
0e8621d07dae7ffaba6cfe83f7288042  numpy-1.24.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0c67808eed6ba6f9e9074e6f11951f09  numpy-1.24.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1065bea5d0670360353e698093954e35  numpy-1.24.0rc1-cp311-cp311-win32.whl
fe2122ec86b45e00b648071ee2931fbc  numpy-1.24.0rc1-cp311-cp311-win_amd64.whl
ab3e8424a04338d43ed466ade66de7a8  numpy-1.24.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
fc6eac08a59c4efb3962d990ff94f2b7  numpy-1.24.0rc1-cp38-cp38-macosx_11_0_arm64.whl
3498ac93ae6abba813e5d76f86ae5356  numpy-1.24.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
629ce4b8cb011ff735ebd482fbf51702  numpy-1.24.0rc1-cp38-cp38-win32.whl
cb503a78e27f0f46b6b43d211275dc58  numpy-1.24.0rc1-cp38-cp38-win_amd64.whl
ffccdb9750336f5e55ab90c8eb7c1a8d  numpy-1.24.0rc1-cp39-cp39-macosx_10_9_x86_64.whl
9751b9f833238a7309ad4e6b43fa8cb5  numpy-1.24.0rc1-cp39-cp39-macosx_11_0_arm64.whl
cb8a10f411773f0ac5e06df067599d45  numpy-1.24.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8d670816134824972afb512498b95ede  numpy-1.24.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
60687b97ab720f6be9e3542e5761769f  numpy-1.24.0rc1-cp39-cp39-win32.whl
11fd99748acc0726ac164034c32bb3cd  numpy-1.24.0rc1-cp39-cp39-win_amd64.whl
09e1d6f6d75facaf84d2b87a33874d4b  numpy-1.24.0rc1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
2da9ad07343b410aca4edf1285e4266b  numpy-1.24.0rc1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9a0e466a55632cc1d67db119f586cd05  numpy-1.24.0rc1-pp38-pypy38_pp73-win_amd64.whl
abc863895b02cdcc436474f6cdf2d14d  numpy-1.24.0rc1.tar.gz

SHA256

36acf6043b94a0e8af75d0a1931678d20e673b83fd79798c805ebc995e233cff  numpy-1.24.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
244c2c22f776e168e1060112f87717d73df2462e0eba4095a7673fe87db49b7a  numpy-1.24.0rc1-cp310-cp310-macosx_11_0_arm64.whl
730112e692c165e8ad69071c70653522ee19d8c8af2da839339de01013eeef24  numpy-1.24.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
960b0d980adfa5c37fea89fc556bb482f9d957a3188be46d03a00fa1bd8f617b  numpy-1.24.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f54788f1a6941cb1b57bcf5ff09a281e5db75bbf9f2ac9534a626128ded0244f  numpy-1.24.0rc1-cp310-cp310-win32.whl
07fef63a5113969d7897589928870c57dd3e28671d617f688486f12c3a3b466a  numpy-1.24.0rc1-cp310-cp310-win_amd64.whl
aea88e02d9335052172f4d6c8163721c3edd086ea3bf3bc9b6d5c55661540f1b  numpy-1.24.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
3950be11c03d250ea780280ce37a6fe7bd21dafcb478e08190c72b6c58ed7d18  numpy-1.24.0rc1-cp311-cp311-macosx_11_0_arm64.whl
743c30cda228f8be9fe552453870b412b38ac232972c617a0f18765dedf395a5  numpy-1.24.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
cab1335b70e24e88ef2b9f727b9f5fc6e0d31d9fe9da0213f6c28cf615b65db0  numpy-1.24.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5283759f0dd905f9e62ed55775345fbb233a53146ceaf2f75e96d939f564ee79  numpy-1.24.0rc1-cp311-cp311-win32.whl
427bd9c45777e8baf782b6b33ebc26a88716c2d9b76b0474987660c2c066dca0  numpy-1.24.0rc1-cp311-cp311-win_amd64.whl
20edfad312395d1cb8ad6ca5d2c42d2dab057f5d1920af3f94c7a72103335d8a  numpy-1.24.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
79134b92e1fb86915369753b3e64a359416cd98ea2329d270eb4e1d0ab300c0d  numpy-1.24.0rc1-cp38-cp38-macosx_11_0_arm64.whl
6f00858573e2316ac5d190cf81dc178d94579969f827ac34c7a53110428e6f72  numpy-1.24.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a8d6f78be3ad0bd9b4adecba2fda570ef491ae69f8c7cc84acd382802a81e242  numpy-1.24.0rc1-cp38-cp38-win32.whl
f1f5fa912df64dd48ec55352b72f4b036ab7b3911e996703f436e17baca780f9  numpy-1.24.0rc1-cp38-cp38-win_amd64.whl
8d149b3c3062dc68e29bdb244edc30c5d80e2c654b5c27c32773bf7354452b48  numpy-1.24.0rc1-cp39-cp39-macosx_10_9_x86_64.whl
d177fbd4d22248640d73f07c3aac2cc1f79c412f61564452abd08606ee5e3713  numpy-1.24.0rc1-cp39-cp39-macosx_11_0_arm64.whl
05faa4ecb98d7bc593afc5b10c25f0e7dd65244b653756b083c605fbf60b9b67  numpy-1.24.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
06d8827c6fa511b61047376efc3a677d447193bf88e6bbde35b4e5223a4b58d6  numpy-1.24.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
15605b92bf10b10e110a9c0f1c4ef6cd58246532c62a0c3d3188c05e69cdcdb6  numpy-1.24.0rc1-cp39-cp39-win32.whl
8046f5c23769791be8432a592b9881984e0e4abc7f552c7e5c349420a27323e7  numpy-1.24.0rc1-cp39-cp39-win_amd64.whl
aa9c4a2f65d669e6559123154da944ad6bd7605cbba5cce81bf6794617870510  numpy-1.24.0rc1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
e44fd1bdfa50979ddec76318e21abc82ee3858e5f45dfc5153b6f660d9d29851  numpy-1.24.0rc1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1802199d70d9f8ac11eb63a1ef50d33915b78a84bacacaadb2896175005103d4  numpy-1.24.0rc1-pp38-pypy38_pp73-win_amd64.whl
d601180710004799acb8f80e564b84e71490fac9d84e115e2f5b0f6709754f16  numpy-1.24.0rc1.tar.gz

v1.23.5

1 year ago

NumPy 1.23.5 Release Notes

NumPy 1.23.5 is a maintenance release that fixes bugs discovered after the 1.23.4 release and keeps the build infrastructure current. The Python versions supported for this release are 3.8-3.11.

Contributors

A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time.

  • @DWesl
  • Aayush Agrawal +
  • Adam Knapp +
  • Charles Harris
  • Navpreet Singh +
  • Sebastian Berg
  • Tania Allard

Pull requests merged

A total of 10 pull requests were merged for this release.

  • #22489: TST, MAINT: Replace most setup with setup_method (also teardown)
  • #22490: MAINT, CI: Switch to cygwin/cygwin-install-action@v2
  • #22494: TST: Make test_partial_iteration_cleanup robust but require leak...
  • #22592: MAINT: Ensure graceful handling of large header sizes
  • #22593: TYP: Spelling alignment for array flag literal
  • #22594: BUG: Fix bounds checking for random.logseries
  • #22595: DEV: Update GH actions and Dockerfile for Gitpod
  • #22596: CI: Only fetch in actions/checkout
  • #22597: BUG: Decrement ref count in gentype_reduce if allocated memory...
  • #22625: BUG: Histogramdd breaks on big arrays in Windows

Checksums

MD5

8a412b79d975199cefadb465279fd569  numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl
1b56e8e6a0516c78473657abf0710538  numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl
c787f4763c9a5876e86a17f1651ba458  numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
db07645022e56747ba3f00c2d742232e  numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c63a6fb7cc16a13aabc82ec57ac6bb4d  numpy-1.23.5-cp310-cp310-win32.whl
3fea9247e1d812600015641941fa273f  numpy-1.23.5-cp310-cp310-win_amd64.whl
4222cfb36e5ac9aec348c81b075e2c05  numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl
6c7102f185b310ac70a62c13d46f04e6  numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl
6b7319f66bf7ac01b49e2a32470baf28  numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3c60928ddb1f55163801f06ac2229eb0  numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6936b6bcfd6474acc7a8c162a9393b3c  numpy-1.23.5-cp311-cp311-win32.whl
6c9af68b7b56c12c913678cafbdc44d6  numpy-1.23.5-cp311-cp311-win_amd64.whl
699daeac883260d3f182ae4bbbd9bbd2  numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl
6c233a36339de0652139e78ef91504d4  numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl
57d5439556ab5078c91bdeffd9c0036e  numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a8045b59187f2e0ccd4294851adbbb8a  numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7f38f7e560e4bf41490372ab84aa7a38  numpy-1.23.5-cp38-cp38-win32.whl
76095726ba459d7f761b44acf2e56bd1  numpy-1.23.5-cp38-cp38-win_amd64.whl
174befd584bc1b03ed87c8f0d149a58e  numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl
9cbac793d77278f5d27a7979b64f6b5b  numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl
6e417b087044e90562183b33f3049b09  numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
54fa63341eaa6da346d824399e8237f6  numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc14d62a158e99c57f925c86551e45f0  numpy-1.23.5-cp39-cp39-win32.whl
bad36b81e7e84bd7a028affa0659d235  numpy-1.23.5-cp39-cp39-win_amd64.whl
b4d17d6b79a8354a2834047669651963  numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
89f6dc4a4ff63fca6af1223111cd888d  numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
633d574a35b8592bab502ef569b0731e  numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl
8b2692a511a3795f3af8af2cd7566a15  numpy-1.23.5.tar.gz

SHA256

9c88793f78fca17da0145455f0d7826bcb9f37da4764af27ac945488116efe63  numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl
e9f4c4e51567b616be64e05d517c79a8a22f3606499941d97bb76f2ca59f982d  numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl
7903ba8ab592b82014713c491f6c5d3a1cde5b4a3bf116404e08f5b52f6daf43  numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5e05b1c973a9f858c74367553e236f287e749465f773328c8ef31abe18f691e1  numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
522e26bbf6377e4d76403826ed689c295b0b238f46c28a7251ab94716da0b280  numpy-1.23.5-cp310-cp310-win32.whl
dbee87b469018961d1ad79b1a5d50c0ae850000b639bcb1b694e9981083243b6  numpy-1.23.5-cp310-cp310-win_amd64.whl
ce571367b6dfe60af04e04a1834ca2dc5f46004ac1cc756fb95319f64c095a96  numpy-1.23.5-cp311-cp311-macosx_10_9_x86_64.whl
56e454c7833e94ec9769fa0f86e6ff8e42ee38ce0ce1fa4cbb747ea7e06d56aa  numpy-1.23.5-cp311-cp311-macosx_11_0_arm64.whl
5039f55555e1eab31124a5768898c9e22c25a65c1e0037f4d7c495a45778c9f2  numpy-1.23.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
58f545efd1108e647604a1b5aa809591ccd2540f468a880bedb97247e72db387  numpy-1.23.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b2a9ab7c279c91974f756c84c365a669a887efa287365a8e2c418f8b3ba73fb0  numpy-1.23.5-cp311-cp311-win32.whl
0cbe9848fad08baf71de1a39e12d1b6310f1d5b2d0ea4de051058e6e1076852d  numpy-1.23.5-cp311-cp311-win_amd64.whl
f063b69b090c9d918f9df0a12116029e274daf0181df392839661c4c7ec9018a  numpy-1.23.5-cp38-cp38-macosx_10_9_x86_64.whl
0aaee12d8883552fadfc41e96b4c82ee7d794949e2a7c3b3a7201e968c7ecab9  numpy-1.23.5-cp38-cp38-macosx_11_0_arm64.whl
92c8c1e89a1f5028a4c6d9e3ccbe311b6ba53694811269b992c0b224269e2398  numpy-1.23.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d208a0f8729f3fb790ed18a003f3a57895b989b40ea4dce4717e9cf4af62c6bb  numpy-1.23.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
06005a2ef6014e9956c09ba07654f9837d9e26696a0470e42beedadb78c11b07  numpy-1.23.5-cp38-cp38-win32.whl
ca51fcfcc5f9354c45f400059e88bc09215fb71a48d3768fb80e357f3b457e1e  numpy-1.23.5-cp38-cp38-win_amd64.whl
8969bfd28e85c81f3f94eb4a66bc2cf1dbdc5c18efc320af34bffc54d6b1e38f  numpy-1.23.5-cp39-cp39-macosx_10_9_x86_64.whl
a7ac231a08bb37f852849bbb387a20a57574a97cfc7b6cabb488a4fc8be176de  numpy-1.23.5-cp39-cp39-macosx_11_0_arm64.whl
bf837dc63ba5c06dc8797c398db1e223a466c7ece27a1f7b5232ba3466aafe3d  numpy-1.23.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
33161613d2269025873025b33e879825ec7b1d831317e68f4f2f0f84ed14c719  numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
af1da88f6bc3d2338ebbf0e22fe487821ea4d8e89053e25fa59d1d79786e7481  numpy-1.23.5-cp39-cp39-win32.whl
09b7847f7e83ca37c6e627682f145856de331049013853f344f37b0c9690e3df  numpy-1.23.5-cp39-cp39-win_amd64.whl
abdde9f795cf292fb9651ed48185503a2ff29be87770c3b8e2a14b0cd7aa16f8  numpy-1.23.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
f9a909a8bae284d46bbfdefbdd4a262ba19d3bc9921b1e76126b1d21c3c34135  numpy-1.23.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
01dd17cbb340bf0fc23981e52e1d18a9d4050792e8fb8363cecbf066a84b827d  numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl
1b1766d6f397c18153d40015ddfc79ddb715cabadc04d2d228d4e5a8bc4ded1a  numpy-1.23.5.tar.gz