Nufhe Save Abandoned

NuCypher fully homomorphic encryption (NuFHE) library implemented in Python

Project README

A GPU implementation of fully homomorphic encryption on torus

This library implements the fully homomorphic encryption algorithm from TFHE using CUDA and OpenCL. Unlike TFHE, where FFT is used internally to speed up polynomial multiplication, nufhe can use either FFT or purely integer NTT (DFT-like transform on a finite field). The latter is based on the arithmetic operations and NTT scheme from cuFHE. Refer to the project documentation for more details.

Usage example

    import random
    import nufhe

    size = 32
    bits1 = [random.choice([False, True]) for i in range(size)]
    bits2 = [random.choice([False, True]) for i in range(size)]
    reference = [not (b1 and b2) for b1, b2 in zip(bits1, bits2)]

    ctx = nufhe.Context()
    secret_key, cloud_key = ctx.make_key_pair()

    ciphertext1 = ctx.encrypt(secret_key, bits1)
    ciphertext2 = ctx.encrypt(secret_key, bits2)

    vm = ctx.make_virtual_machine(cloud_key)
    result = vm.gate_nand(ciphertext1, ciphertext2)
    result_bits = ctx.decrypt(secret_key, result)

    assert all(result_bits == reference)


Platform Library Performance (ms/bit)
Binary Gate MUX Gate
Single Core/Single GPU - FFT TFHE (CPU) 13 26
nuFHE 0.13 0.22
Speedup 100.9 117.7
Single Core/Single GPU - NTT cuFHE 0.35 N/A
nuFHE 0.35 0.67
Speedup 1.0 -
Open Source Agenda is not affiliated with "Nufhe" Project. README Source: nucypher/nufhe
Open Issues
Last Commit
2 years ago

Open Source Agenda Badge

Open Source Agenda Rating