Nfnets Pytorch Save

NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch. Find explanation at

Project README

PyTorch implementation of Normalizer-Free Networks and Adaptive Gradient Clipping

Python Package Docs Papers using ma-gym


Original code:

Blog post: Feel free to subscribe to the newsletter, and leave a comment if you have anything to add/suggest publicly.

Do star this repository if it helps your work, and don't forget to cite if you use this code in your research!


Install from PyPi:

pip3 install nfnets-pytorch

or install the latest code using:

pip3 install git+



Use WSConv1d, WSConv2d, ScaledStdConv2d(timm) and WSConvTranspose2d like any other torch.nn.Conv2d or torch.nn.ConvTranspose2d modules.

import torch
from torch import nn
from nfnets import WSConv2d, WSConvTranspose2d, ScaledStdConv2d

conv = nn.Conv2d(3,6,3)
w_conv = WSConv2d(3,6,3)

conv_t = nn.ConvTranspose2d(3,6,3)
w_conv_t = WSConvTranspose2d(3,6,3)
import torch
from torch import nn, optim
from torchvision.models import resnet18

from nfnets import WSConv2d
from nfnets.agc import AGC # Needs testing

conv = nn.Conv2d(3,6,3)
w_conv = WSConv2d(3,6,3)

optim = optim.SGD(conv.parameters(), 1e-3)
optim_agc = AGC(conv.parameters(), optim) # Needs testing

# Ignore fc of a model while applying AGC.
model = resnet18()
optim = torch.optim.SGD(model.parameters(), 1e-3)
optim = AGC(model.parameters(), optim, model=model, ignore_agc=['fc'])

SGD - Adaptive Gradient Clipping

Similarly, use SGD_AGC like torch.optim.SGD

# The generic AGC is preferable since the paper recommends not applying AGC to the last fc layer.
import torch
from torch import nn, optim
from nfnets import WSConv2d, SGD_AGC

conv = nn.Conv2d(3,6,3)
w_conv = WSConv2d(3,6,3)

optim = optim.SGD(conv.parameters(), 1e-3)
optim_agc = SGD_AGC(conv.parameters(), 1e-3)

Using it within any non-residual PyTorch model (with non-residual connections)

replace_conv replaces the convolution in your (non-residual) model with the convolution class and replaces the batchnorm with identity. While the identity is not ideal, it shouldn't cause a major difference in the latency.

Note that as per the paper, replace_conv is only valid for non-residual models(vgg, mobilenetv1, etc.). See the above mentioned blog post for more information regarding the details.

import torch
from torch import nn
from torchvision.models import vgg16

from nfnets import replace_conv, WSConv2d, ScaledStdConv2d

model = vgg16()
replace_conv(model, WSConv2d) # This repo's original implementation
replace_conv(model, ScaledStdConv2d) # From timm

class YourCustomClass(nn.Conv2d):
replace_conv(model, YourCustomClass)


Find the docs at readthedocs

Cite Original Work

To cite the original paper, use:

  author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan},
  title={High-Performance Large-Scale Image Recognition Without Normalization},
  journal={arXiv preprint arXiv:},

Cite this repository

To cite this repository, use:

  author = {Vaibhav Balloli},
  title = {A PyTorch implementation of NFNets and Adaptive Gradient Clipping},
  year = {2021},
  howpublished = {\url{}}
Open Source Agenda is not affiliated with "Nfnets Pytorch" Project. README Source: vballoli/nfnets-pytorch

Open Source Agenda Badge

Open Source Agenda Rating